MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o4 Structured version   Visualization version   GIF version

Theorem dff1o4 6145
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))

Proof of Theorem dff1o4
StepHypRef Expression
1 dff1o2 6142 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
2 3anass 1042 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)))
3 df-rn 5125 . . . . . 6 ran 𝐹 = dom 𝐹
43eqeq1i 2627 . . . . 5 (ran 𝐹 = 𝐵 ↔ dom 𝐹 = 𝐵)
54anbi2i 730 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
6 df-fn 5891 . . . 4 (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
75, 6bitr4i 267 . . 3 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ 𝐹 Fn 𝐵)
87anbi2i 730 . 2 ((𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
91, 2, 83bitri 286 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  ccnv 5113  dom cdm 5114  ran crn 5115  Fun wfun 5882   Fn wfn 5883  1-1-ontowf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-in 3581  df-ss 3588  df-rn 5125  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895
This theorem is referenced by:  f1ocnv  6149  f1oun  6156  f1o00  6171  f1oi  6174  f1osn  6176  f1oprswap  6180  f1ompt  6382  f1ofveu  6645  f1ocnvd  6884  curry1  7269  curry2  7272  mapsnf1o2  7905  omxpenlem  8061  sbthlem9  8078  compssiso  9196  mptfzshft  14510  fsumrev  14511  fprodrev  14707  invf1o  16429  mhmf1o  17345  grpinvf1o  17485  ghmf1o  17690  rhmf1o  18732  srngf1o  18854  lmhmf1o  19046  hmeof1o2  21566  axcontlem2  25845  f1o3d  29431  padct  29497  f1od2  29499  cdleme51finvN  35844  fsovf1od  38310  mgmhmf1o  41787  rnghmf1o  41903
  Copyright terms: Public domain W3C validator