![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oexbi | Structured version Visualization version GIF version |
Description: There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018.) |
Ref | Expression |
---|---|
f1oexbi | ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3203 | . . . . 5 ⊢ 𝑓 ∈ V | |
2 | 1 | cnvex 7113 | . . . 4 ⊢ ◡𝑓 ∈ V |
3 | f1ocnv 6149 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵–1-1-onto→𝐴) | |
4 | f1oeq1 6127 | . . . . 5 ⊢ (𝑔 = ◡𝑓 → (𝑔:𝐵–1-1-onto→𝐴 ↔ ◡𝑓:𝐵–1-1-onto→𝐴)) | |
5 | 4 | spcegv 3294 | . . . 4 ⊢ (◡𝑓 ∈ V → (◡𝑓:𝐵–1-1-onto→𝐴 → ∃𝑔 𝑔:𝐵–1-1-onto→𝐴)) |
6 | 2, 3, 5 | mpsyl 68 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) |
7 | 6 | exlimiv 1858 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) |
8 | vex 3203 | . . . . 5 ⊢ 𝑔 ∈ V | |
9 | 8 | cnvex 7113 | . . . 4 ⊢ ◡𝑔 ∈ V |
10 | f1ocnv 6149 | . . . 4 ⊢ (𝑔:𝐵–1-1-onto→𝐴 → ◡𝑔:𝐴–1-1-onto→𝐵) | |
11 | f1oeq1 6127 | . . . . 5 ⊢ (𝑓 = ◡𝑔 → (𝑓:𝐴–1-1-onto→𝐵 ↔ ◡𝑔:𝐴–1-1-onto→𝐵)) | |
12 | 11 | spcegv 3294 | . . . 4 ⊢ (◡𝑔 ∈ V → (◡𝑔:𝐴–1-1-onto→𝐵 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
13 | 9, 10, 12 | mpsyl 68 | . . 3 ⊢ (𝑔:𝐵–1-1-onto→𝐴 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
14 | 13 | exlimiv 1858 | . 2 ⊢ (∃𝑔 𝑔:𝐵–1-1-onto→𝐴 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
15 | 7, 14 | impbii 199 | 1 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∃wex 1704 ∈ wcel 1990 Vcvv 3200 ◡ccnv 5113 –1-1-onto→wf1o 5887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 |
This theorem is referenced by: rusgrnumwlkg 26872 f1ocnt 29559 |
Copyright terms: Public domain | W3C validator |