MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwlkg Structured version   Visualization version   GIF version

Theorem rusgrnumwlkg 26872
Description: In a k-regular graph, the number of walks of a fixed length n from a fixed vertex is k to the power of n. This theorem corresponds to statement 11 in [Huneke] p. 2: "The total number of walks v(0) v(1) ... v(n-2) from a fixed vertex v = v(0) is k^(n-2) as G is k-regular.". This theorem even holds for n=0: then the walk consists of only one vertex v(0), so the number of walks of length n=0 starting with v=v(0) is 1=k^0. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.)
Hypothesis
Ref Expression
rusgrnumwwlkg.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrnumwlkg ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (#‘{𝑤 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}) = (𝐾𝑁))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑁   𝑤,𝑃   𝑤,𝑉

Proof of Theorem rusgrnumwlkg
Dummy variables 𝑓 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . . . 4 (𝑁 WWalksN 𝐺) ∈ V
21rabex 4813 . . 3 {𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃} ∈ V
3 rusgrusgr 26460 . . . . . 6 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph )
43adantr 481 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝐺 ∈ USGraph )
5 simpr3 1069 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
6 rusgrnumwwlkg.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
76eleq2i 2693 . . . . . . . 8 (𝑃𝑉𝑃 ∈ (Vtx‘𝐺))
87biimpi 206 . . . . . . 7 (𝑃𝑉𝑃 ∈ (Vtx‘𝐺))
983ad2ant2 1083 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝑃 ∈ (Vtx‘𝐺))
109adantl 482 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝑃 ∈ (Vtx‘𝐺))
11 wlksnwwlknvbij 26803 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0𝑃 ∈ (Vtx‘𝐺)) → ∃𝑓 𝑓:{𝑤 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}–1-1-onto→{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃})
124, 5, 10, 11syl3anc 1326 . . . 4 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ∃𝑓 𝑓:{𝑤 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}–1-1-onto→{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃})
13 f1oexbi 7116 . . . 4 (∃𝑔 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}–1-1-onto→{𝑤 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)} ↔ ∃𝑓 𝑓:{𝑤 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}–1-1-onto→{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃})
1412, 13sylibr 224 . . 3 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ∃𝑔 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}–1-1-onto→{𝑤 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)})
15 hasheqf1oi 13140 . . 3 ({𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃} ∈ V → (∃𝑔 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}–1-1-onto→{𝑤 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)} → (#‘{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) = (#‘{𝑤 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)})))
162, 14, 15mpsyl 68 . 2 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (#‘{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) = (#‘{𝑤 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}))
176rusgrnumwwlkg 26871 . 2 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (#‘{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) = (𝐾𝑁))
1816, 17eqtr3d 2658 1 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (#‘{𝑤 ∈ (Walks‘𝐺) ∣ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}) = (𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {crab 2916  Vcvv 3200   class class class wbr 4653  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Fincfn 7955  0cc0 9936  0cn0 11292  cexp 12860  #chash 13117  Vtxcvtx 25874   USGraph cusgr 26044   RegUSGraph crusgr 26452  Walkscwlks 26492   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454  df-wlks 26495  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator