MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oexbi Structured version   Visualization version   Unicode version

Theorem f1oexbi 7116
Description: There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018.)
Assertion
Ref Expression
f1oexbi  |-  ( E. f  f : A -1-1-onto-> B  <->  E. g  g : B -1-1-onto-> A
)
Distinct variable groups:    A, f,
g    B, f, g

Proof of Theorem f1oexbi
StepHypRef Expression
1 vex 3203 . . . . 5  |-  f  e. 
_V
21cnvex 7113 . . . 4  |-  `' f  e.  _V
3 f1ocnv 6149 . . . 4  |-  ( f : A -1-1-onto-> B  ->  `' f : B -1-1-onto-> A )
4 f1oeq1 6127 . . . . 5  |-  ( g  =  `' f  -> 
( g : B -1-1-onto-> A  <->  `' f : B -1-1-onto-> A ) )
54spcegv 3294 . . . 4  |-  ( `' f  e.  _V  ->  ( `' f : B -1-1-onto-> A  ->  E. g  g : B -1-1-onto-> A ) )
62, 3, 5mpsyl 68 . . 3  |-  ( f : A -1-1-onto-> B  ->  E. g 
g : B -1-1-onto-> A )
76exlimiv 1858 . 2  |-  ( E. f  f : A -1-1-onto-> B  ->  E. g  g : B -1-1-onto-> A )
8 vex 3203 . . . . 5  |-  g  e. 
_V
98cnvex 7113 . . . 4  |-  `' g  e.  _V
10 f1ocnv 6149 . . . 4  |-  ( g : B -1-1-onto-> A  ->  `' g : A -1-1-onto-> B )
11 f1oeq1 6127 . . . . 5  |-  ( f  =  `' g  -> 
( f : A -1-1-onto-> B  <->  `' g : A -1-1-onto-> B ) )
1211spcegv 3294 . . . 4  |-  ( `' g  e.  _V  ->  ( `' g : A -1-1-onto-> B  ->  E. f  f : A -1-1-onto-> B ) )
139, 10, 12mpsyl 68 . . 3  |-  ( g : B -1-1-onto-> A  ->  E. f 
f : A -1-1-onto-> B )
1413exlimiv 1858 . 2  |-  ( E. g  g : B -1-1-onto-> A  ->  E. f  f : A -1-1-onto-> B )
157, 14impbii 199 1  |-  ( E. f  f : A -1-1-onto-> B  <->  E. g  g : B -1-1-onto-> A
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196   E.wex 1704    e. wcel 1990   _Vcvv 3200   `'ccnv 5113   -1-1-onto->wf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895
This theorem is referenced by:  rusgrnumwlkg  26872  f1ocnt  29559
  Copyright terms: Public domain W3C validator