MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdconj Structured version   Visualization version   GIF version

Theorem f1omvdconj 17866
Description: Conjugation of a permutation takes the image of the moved subclass. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1omvdconj ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I )))

Proof of Theorem f1omvdconj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difss 3737 . . . . . 6 (((𝐺𝐹) ∘ 𝐺) ∖ I ) ⊆ ((𝐺𝐹) ∘ 𝐺)
2 dmss 5323 . . . . . 6 ((((𝐺𝐹) ∘ 𝐺) ∖ I ) ⊆ ((𝐺𝐹) ∘ 𝐺) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ⊆ dom ((𝐺𝐹) ∘ 𝐺))
31, 2ax-mp 5 . . . . 5 dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ⊆ dom ((𝐺𝐹) ∘ 𝐺)
4 dmcoss 5385 . . . . 5 dom ((𝐺𝐹) ∘ 𝐺) ⊆ dom 𝐺
53, 4sstri 3612 . . . 4 dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ⊆ dom 𝐺
6 f1ocnv 6149 . . . . . 6 (𝐺:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴)
76adantl 482 . . . . 5 ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → 𝐺:𝐴1-1-onto𝐴)
8 f1odm 6141 . . . . 5 (𝐺:𝐴1-1-onto𝐴 → dom 𝐺 = 𝐴)
97, 8syl 17 . . . 4 ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → dom 𝐺 = 𝐴)
105, 9syl5sseq 3653 . . 3 ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ⊆ 𝐴)
1110sselda 3603 . 2 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥 ∈ dom (((𝐺𝐹) ∘ 𝐺) ∖ I )) → 𝑥𝐴)
12 imassrn 5477 . . . 4 (𝐺 “ dom (𝐹 ∖ I )) ⊆ ran 𝐺
13 f1of 6137 . . . . . 6 (𝐺:𝐴1-1-onto𝐴𝐺:𝐴𝐴)
1413adantl 482 . . . . 5 ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → 𝐺:𝐴𝐴)
15 frn 6053 . . . . 5 (𝐺:𝐴𝐴 → ran 𝐺𝐴)
1614, 15syl 17 . . . 4 ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → ran 𝐺𝐴)
1712, 16syl5ss 3614 . . 3 ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → (𝐺 “ dom (𝐹 ∖ I )) ⊆ 𝐴)
1817sselda 3603 . 2 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥 ∈ (𝐺 “ dom (𝐹 ∖ I ))) → 𝑥𝐴)
19 simpl 473 . . . . . . 7 ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → 𝐹:𝐴𝐴)
20 fco 6058 . . . . . . 7 ((𝐺:𝐴𝐴𝐹:𝐴𝐴) → (𝐺𝐹):𝐴𝐴)
2114, 19, 20syl2anc 693 . . . . . 6 ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → (𝐺𝐹):𝐴𝐴)
22 f1of 6137 . . . . . . 7 (𝐺:𝐴1-1-onto𝐴𝐺:𝐴𝐴)
237, 22syl 17 . . . . . 6 ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → 𝐺:𝐴𝐴)
24 fco 6058 . . . . . 6 (((𝐺𝐹):𝐴𝐴𝐺:𝐴𝐴) → ((𝐺𝐹) ∘ 𝐺):𝐴𝐴)
2521, 23, 24syl2anc 693 . . . . 5 ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐺𝐹) ∘ 𝐺):𝐴𝐴)
26 ffn 6045 . . . . 5 (((𝐺𝐹) ∘ 𝐺):𝐴𝐴 → ((𝐺𝐹) ∘ 𝐺) Fn 𝐴)
2725, 26syl 17 . . . 4 ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐺𝐹) ∘ 𝐺) Fn 𝐴)
28 fnelnfp 6443 . . . 4 ((((𝐺𝐹) ∘ 𝐺) Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ↔ (((𝐺𝐹) ∘ 𝐺)‘𝑥) ≠ 𝑥))
2927, 28sylan 488 . . 3 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → (𝑥 ∈ dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ↔ (((𝐺𝐹) ∘ 𝐺)‘𝑥) ≠ 𝑥))
30 f1ofn 6138 . . . . . . . . 9 (𝐺:𝐴1-1-onto𝐴𝐺 Fn 𝐴)
317, 30syl 17 . . . . . . . 8 ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → 𝐺 Fn 𝐴)
32 fvco2 6273 . . . . . . . 8 ((𝐺 Fn 𝐴𝑥𝐴) → (((𝐺𝐹) ∘ 𝐺)‘𝑥) = ((𝐺𝐹)‘(𝐺𝑥)))
3331, 32sylan 488 . . . . . . 7 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → (((𝐺𝐹) ∘ 𝐺)‘𝑥) = ((𝐺𝐹)‘(𝐺𝑥)))
34 ffn 6045 . . . . . . . . 9 (𝐹:𝐴𝐴𝐹 Fn 𝐴)
3534ad2antrr 762 . . . . . . . 8 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → 𝐹 Fn 𝐴)
36 ffvelrn 6357 . . . . . . . . 9 ((𝐺:𝐴𝐴𝑥𝐴) → (𝐺𝑥) ∈ 𝐴)
3723, 36sylan 488 . . . . . . . 8 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ 𝐴)
38 fvco2 6273 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ (𝐺𝑥) ∈ 𝐴) → ((𝐺𝐹)‘(𝐺𝑥)) = (𝐺‘(𝐹‘(𝐺𝑥))))
3935, 37, 38syl2anc 693 . . . . . . 7 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → ((𝐺𝐹)‘(𝐺𝑥)) = (𝐺‘(𝐹‘(𝐺𝑥))))
4033, 39eqtrd 2656 . . . . . 6 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → (((𝐺𝐹) ∘ 𝐺)‘𝑥) = (𝐺‘(𝐹‘(𝐺𝑥))))
4140eqeq1d 2624 . . . . 5 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → ((((𝐺𝐹) ∘ 𝐺)‘𝑥) = 𝑥 ↔ (𝐺‘(𝐹‘(𝐺𝑥))) = 𝑥))
42 simplr 792 . . . . . 6 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → 𝐺:𝐴1-1-onto𝐴)
43 simpll 790 . . . . . . 7 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → 𝐹:𝐴𝐴)
44 ffvelrn 6357 . . . . . . 7 ((𝐹:𝐴𝐴 ∧ (𝐺𝑥) ∈ 𝐴) → (𝐹‘(𝐺𝑥)) ∈ 𝐴)
4543, 37, 44syl2anc 693 . . . . . 6 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → (𝐹‘(𝐺𝑥)) ∈ 𝐴)
46 simpr 477 . . . . . 6 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
47 f1ocnvfvb 6535 . . . . . 6 ((𝐺:𝐴1-1-onto𝐴 ∧ (𝐹‘(𝐺𝑥)) ∈ 𝐴𝑥𝐴) → ((𝐺‘(𝐹‘(𝐺𝑥))) = 𝑥 ↔ (𝐺𝑥) = (𝐹‘(𝐺𝑥))))
4842, 45, 46, 47syl3anc 1326 . . . . 5 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → ((𝐺‘(𝐹‘(𝐺𝑥))) = 𝑥 ↔ (𝐺𝑥) = (𝐹‘(𝐺𝑥))))
4941, 48bitrd 268 . . . 4 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → ((((𝐺𝐹) ∘ 𝐺)‘𝑥) = 𝑥 ↔ (𝐺𝑥) = (𝐹‘(𝐺𝑥))))
5049necon3bid 2838 . . 3 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → ((((𝐺𝐹) ∘ 𝐺)‘𝑥) ≠ 𝑥 ↔ (𝐺𝑥) ≠ (𝐹‘(𝐺𝑥))))
51 necom 2847 . . . 4 ((𝐺𝑥) ≠ (𝐹‘(𝐺𝑥)) ↔ (𝐹‘(𝐺𝑥)) ≠ (𝐺𝑥))
52 f1of1 6136 . . . . . . 7 (𝐺:𝐴1-1-onto𝐴𝐺:𝐴1-1𝐴)
5352ad2antlr 763 . . . . . 6 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → 𝐺:𝐴1-1𝐴)
54 difss 3737 . . . . . . . . 9 (𝐹 ∖ I ) ⊆ 𝐹
55 dmss 5323 . . . . . . . . 9 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
5654, 55ax-mp 5 . . . . . . . 8 dom (𝐹 ∖ I ) ⊆ dom 𝐹
57 fdm 6051 . . . . . . . 8 (𝐹:𝐴𝐴 → dom 𝐹 = 𝐴)
5856, 57syl5sseq 3653 . . . . . . 7 (𝐹:𝐴𝐴 → dom (𝐹 ∖ I ) ⊆ 𝐴)
5958ad2antrr 762 . . . . . 6 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → dom (𝐹 ∖ I ) ⊆ 𝐴)
60 f1elima 6520 . . . . . 6 ((𝐺:𝐴1-1𝐴 ∧ (𝐺𝑥) ∈ 𝐴 ∧ dom (𝐹 ∖ I ) ⊆ 𝐴) → ((𝐺‘(𝐺𝑥)) ∈ (𝐺 “ dom (𝐹 ∖ I )) ↔ (𝐺𝑥) ∈ dom (𝐹 ∖ I )))
6153, 37, 59, 60syl3anc 1326 . . . . 5 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → ((𝐺‘(𝐺𝑥)) ∈ (𝐺 “ dom (𝐹 ∖ I )) ↔ (𝐺𝑥) ∈ dom (𝐹 ∖ I )))
62 f1ocnvfv2 6533 . . . . . . 7 ((𝐺:𝐴1-1-onto𝐴𝑥𝐴) → (𝐺‘(𝐺𝑥)) = 𝑥)
6362adantll 750 . . . . . 6 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → (𝐺‘(𝐺𝑥)) = 𝑥)
6463eleq1d 2686 . . . . 5 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → ((𝐺‘(𝐺𝑥)) ∈ (𝐺 “ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ (𝐺 “ dom (𝐹 ∖ I ))))
65 fnelnfp 6443 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝐺𝑥) ∈ 𝐴) → ((𝐺𝑥) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(𝐺𝑥)) ≠ (𝐺𝑥)))
6635, 37, 65syl2anc 693 . . . . 5 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(𝐺𝑥)) ≠ (𝐺𝑥)))
6761, 64, 663bitr3rd 299 . . . 4 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → ((𝐹‘(𝐺𝑥)) ≠ (𝐺𝑥) ↔ 𝑥 ∈ (𝐺 “ dom (𝐹 ∖ I ))))
6851, 67syl5bb 272 . . 3 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → ((𝐺𝑥) ≠ (𝐹‘(𝐺𝑥)) ↔ 𝑥 ∈ (𝐺 “ dom (𝐹 ∖ I ))))
6929, 50, 683bitrd 294 . 2 (((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) ∧ 𝑥𝐴) → (𝑥 ∈ dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ↔ 𝑥 ∈ (𝐺 “ dom (𝐹 ∖ I ))))
7011, 18, 69eqrdav 2621 1 ((𝐹:𝐴𝐴𝐺:𝐴1-1-onto𝐴) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  wss 3574   I cid 5023  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118   Fn wfn 5883  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  pmtrfconj  17886  psgnunilem1  17913
  Copyright terms: Public domain W3C validator