| Step | Hyp | Ref
| Expression |
| 1 | | f1ofn 6138 |
. . 3
⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹 Fn 𝐴) |
| 2 | 1 | ad2antrr 762 |
. 2
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) →
𝐹 Fn 𝐴) |
| 3 | | f1ofn 6138 |
. . 3
⊢ (𝐺:𝐴–1-1-onto→𝐴 → 𝐺 Fn 𝐴) |
| 4 | 3 | ad2antlr 763 |
. 2
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) →
𝐺 Fn 𝐴) |
| 5 | | 1onn 7719 |
. . . . . . . 8
⊢
1𝑜 ∈ ω |
| 6 | 5 | a1i 11 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ dom (𝐺 ∖ I )) →
1𝑜 ∈ ω) |
| 7 | | simplrr 801 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I )) |
| 8 | | simplrl 800 |
. . . . . . . . 9
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈
2𝑜) |
| 9 | | df-2o 7561 |
. . . . . . . . 9
⊢
2𝑜 = suc 1𝑜 |
| 10 | 8, 9 | syl6breq 4694 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈ suc
1𝑜) |
| 11 | 7, 10 | eqbrtrd 4675 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) ≈ suc
1𝑜) |
| 12 | | simpr 477 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ dom (𝐺 ∖ I )) → 𝑥 ∈ dom (𝐺 ∖ I )) |
| 13 | | dif1en 8193 |
. . . . . . 7
⊢
((1𝑜 ∈ ω ∧ dom (𝐺 ∖ I ) ≈ suc
1𝑜 ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈
1𝑜) |
| 14 | 6, 11, 12, 13 | syl3anc 1326 |
. . . . . 6
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈
1𝑜) |
| 15 | | euen1b 8027 |
. . . . . . 7
⊢ ((dom
(𝐺 ∖ I ) ∖
{𝑥}) ≈
1𝑜 ↔ ∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 16 | | eumo 2499 |
. . . . . . 7
⊢
(∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 17 | 15, 16 | sylbi 207 |
. . . . . 6
⊢ ((dom
(𝐺 ∖ I ) ∖
{𝑥}) ≈
1𝑜 → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 18 | 14, 17 | syl 17 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ dom (𝐺 ∖ I )) →
∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 19 | | f1omvdmvd 17863 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})) |
| 20 | 19 | ex 450 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→𝐴 → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))) |
| 21 | 20 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) →
(𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))) |
| 22 | | eleq2 2690 |
. . . . . . . 8
⊢ (dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I ))) |
| 23 | 22 | ad2antll 765 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) →
(𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I ))) |
| 24 | | difeq1 3721 |
. . . . . . . . 9
⊢ (dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (dom (𝐺 ∖ I ) ∖ {𝑥}) = (dom (𝐹 ∖ I ) ∖ {𝑥})) |
| 25 | 24 | eleq2d 2687 |
. . . . . . . 8
⊢ (dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ) → ((𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))) |
| 26 | 25 | ad2antll 765 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) →
((𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))) |
| 27 | 21, 23, 26 | 3imtr4d 283 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) →
(𝑥 ∈ dom (𝐺 ∖ I ) → (𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) |
| 28 | 27 | imp 445 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 29 | | simplr 792 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) →
𝐺:𝐴–1-1-onto→𝐴) |
| 30 | | f1omvdmvd 17863 |
. . . . . 6
⊢ ((𝐺:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 31 | 29, 30 | sylan 488 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 32 | | fvex 6201 |
. . . . . . 7
⊢ (𝐹‘𝑥) ∈ V |
| 33 | | fvex 6201 |
. . . . . . 7
⊢ (𝐺‘𝑥) ∈ V |
| 34 | 32, 33 | pm3.2i 471 |
. . . . . 6
⊢ ((𝐹‘𝑥) ∈ V ∧ (𝐺‘𝑥) ∈ V) |
| 35 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) |
| 36 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑦 = (𝐺‘𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) |
| 37 | 35, 36 | moi 3389 |
. . . . . 6
⊢ ((((𝐹‘𝑥) ∈ V ∧ (𝐺‘𝑥) ∈ V) ∧ ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 38 | 34, 37 | mp3an1 1411 |
. . . . 5
⊢
((∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 39 | 18, 28, 31, 38 | syl12anc 1324 |
. . . 4
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 40 | 39 | adantlr 751 |
. . 3
⊢
(((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ 𝐴) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 41 | | simplrr 801 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ 𝐴) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I )) |
| 42 | 41 | eleq2d 2687 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I ))) |
| 43 | | fnelnfp 6443 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
| 44 | 2, 43 | sylan 488 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
| 45 | 42, 44 | bitrd 268 |
. . . . . 6
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
| 46 | 45 | necon2bbid 2837 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I ))) |
| 47 | 46 | biimpar 502 |
. . . 4
⊢
(((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ 𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) = 𝑥) |
| 48 | | fnelnfp 6443 |
. . . . . . 7
⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺‘𝑥) ≠ 𝑥)) |
| 49 | 4, 48 | sylan 488 |
. . . . . 6
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺‘𝑥) ≠ 𝑥)) |
| 50 | 49 | necon2bbid 2837 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ 𝐴) → ((𝐺‘𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I ))) |
| 51 | 50 | biimpar 502 |
. . . 4
⊢
(((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ 𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺‘𝑥) = 𝑥) |
| 52 | 47, 51 | eqtr4d 2659 |
. . 3
⊢
(((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ 𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 53 | 40, 52 | pm2.61dan 832 |
. 2
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) ∧
𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 54 | 2, 4, 53 | eqfnfvd 6314 |
1
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2𝑜
∧ dom (𝐺 ∖ I ) =
dom (𝐹 ∖ I ))) →
𝐹 = 𝐺) |