MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssres Structured version   Visualization version   GIF version

Theorem f1ssres 6108
Description: A function that is one-to-one is also one-to-one on some subset of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
f1ssres ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)

Proof of Theorem f1ssres
StepHypRef Expression
1 f1f 6101 . . 3 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fssres 6070 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
31, 2sylan 488 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
4 df-f1 5893 . . . . 5 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
54simprbi 480 . . . 4 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
6 funres11 5966 . . . 4 (Fun 𝐹 → Fun (𝐹𝐶))
75, 6syl 17 . . 3 (𝐹:𝐴1-1𝐵 → Fun (𝐹𝐶))
87adantr 481 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → Fun (𝐹𝐶))
9 df-f1 5893 . 2 ((𝐹𝐶):𝐶1-1𝐵 ↔ ((𝐹𝐶):𝐶𝐵 ∧ Fun (𝐹𝐶)))
103, 8, 9sylanbrc 698 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wss 3574  ccnv 5113  cres 5116  Fun wfun 5882  wf 5884  1-1wf1 5885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893
This theorem is referenced by:  f1ores  6151  oacomf1olem  7644  pwfseqlem5  9485  hashimarn  13227  hashf1lem2  13240  conjsubgen  17693  sylow1lem2  18014  sylow2blem1  18035  usgrres  26200
  Copyright terms: Public domain W3C validator