![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ssres | Structured version Visualization version GIF version |
Description: A function that is one-to-one is also one-to-one on some subset of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.) |
Ref | Expression |
---|---|
f1ssres | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6101 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | fssres 6070 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) | |
3 | 1, 2 | sylan 488 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
4 | df-f1 5893 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | 4 | simprbi 480 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
6 | funres11 5966 | . . . 4 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐶)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡(𝐹 ↾ 𝐶)) |
8 | 7 | adantr 481 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → Fun ◡(𝐹 ↾ 𝐶)) |
9 | df-f1 5893 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ↔ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ Fun ◡(𝐹 ↾ 𝐶))) | |
10 | 3, 8, 9 | sylanbrc 698 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ⊆ wss 3574 ◡ccnv 5113 ↾ cres 5116 Fun wfun 5882 ⟶wf 5884 –1-1→wf1 5885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 |
This theorem is referenced by: f1ores 6151 oacomf1olem 7644 pwfseqlem5 9485 hashimarn 13227 hashf1lem2 13240 conjsubgen 17693 sylow1lem2 18014 sylow2blem1 18035 usgrres 26200 |
Copyright terms: Public domain | W3C validator |