MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem1 Structured version   Visualization version   GIF version

Theorem sylow2blem1 18035
Description: Lemma for sylow2b 18038. Evaluate the group action on a left coset. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x 𝑋 = (Base‘𝐺)
sylow2b.xf (𝜑𝑋 ∈ Fin)
sylow2b.h (𝜑𝐻 ∈ (SubGrp‘𝐺))
sylow2b.k (𝜑𝐾 ∈ (SubGrp‘𝐺))
sylow2b.a + = (+g𝐺)
sylow2b.r = (𝐺 ~QG 𝐾)
sylow2b.m · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
Assertion
Ref Expression
sylow2blem1 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 · [𝐶] ) = [(𝐵 + 𝐶)] )
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝐾,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝜑,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sylow2blem1
StepHypRef Expression
1 simp2 1062 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → 𝐵𝐻)
2 sylow2b.r . . . . 5 = (𝐺 ~QG 𝐾)
3 ovex 6678 . . . . 5 (𝐺 ~QG 𝐾) ∈ V
42, 3eqeltri 2697 . . . 4 ∈ V
5 simp3 1063 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → 𝐶𝑋)
6 ecelqsg 7802 . . . 4 (( ∈ V ∧ 𝐶𝑋) → [𝐶] ∈ (𝑋 / ))
74, 5, 6sylancr 695 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] ∈ (𝑋 / ))
8 simpr 477 . . . . . 6 ((𝑥 = 𝐵𝑦 = [𝐶] ) → 𝑦 = [𝐶] )
9 simpl 473 . . . . . . 7 ((𝑥 = 𝐵𝑦 = [𝐶] ) → 𝑥 = 𝐵)
109oveq1d 6665 . . . . . 6 ((𝑥 = 𝐵𝑦 = [𝐶] ) → (𝑥 + 𝑧) = (𝐵 + 𝑧))
118, 10mpteq12dv 4733 . . . . 5 ((𝑥 = 𝐵𝑦 = [𝐶] ) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
1211rneqd 5353 . . . 4 ((𝑥 = 𝐵𝑦 = [𝐶] ) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
13 sylow2b.m . . . 4 · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
14 ecexg 7746 . . . . . . 7 ( ∈ V → [𝐶] ∈ V)
154, 14ax-mp 5 . . . . . 6 [𝐶] ∈ V
1615mptex 6486 . . . . 5 (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ∈ V
1716rnex 7100 . . . 4 ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ∈ V
1812, 13, 17ovmpt2a 6791 . . 3 ((𝐵𝐻 ∧ [𝐶] ∈ (𝑋 / )) → (𝐵 · [𝐶] ) = ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
191, 7, 18syl2anc 693 . 2 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 · [𝐶] ) = ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
20 sylow2b.xf . . . . 5 (𝜑𝑋 ∈ Fin)
21 sylow2b.k . . . . . . 7 (𝜑𝐾 ∈ (SubGrp‘𝐺))
22 sylow2b.x . . . . . . . 8 𝑋 = (Base‘𝐺)
2322, 2eqger 17644 . . . . . . 7 (𝐾 ∈ (SubGrp‘𝐺) → Er 𝑋)
2421, 23syl 17 . . . . . 6 (𝜑 Er 𝑋)
2524ecss 7788 . . . . 5 (𝜑 → [(𝐵 + 𝐶)] 𝑋)
26 ssfi 8180 . . . . 5 ((𝑋 ∈ Fin ∧ [(𝐵 + 𝐶)] 𝑋) → [(𝐵 + 𝐶)] ∈ Fin)
2720, 25, 26syl2anc 693 . . . 4 (𝜑 → [(𝐵 + 𝐶)] ∈ Fin)
28273ad2ant1 1082 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → [(𝐵 + 𝐶)] ∈ Fin)
29 vex 3203 . . . . . . . 8 𝑧 ∈ V
30 elecg 7785 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝐶𝑋) → (𝑧 ∈ [𝐶] 𝐶 𝑧))
3129, 5, 30sylancr 695 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] 𝐶 𝑧))
3231biimpa 501 . . . . . 6 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝑧 ∈ [𝐶] ) → 𝐶 𝑧)
33 sylow2b.h . . . . . . . . . . . 12 (𝜑𝐻 ∈ (SubGrp‘𝐺))
34 subgrcl 17599 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
3533, 34syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ Grp)
36353ad2ant1 1082 . . . . . . . . . 10 ((𝜑𝐵𝐻𝐶𝑋) → 𝐺 ∈ Grp)
3722subgss 17595 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
3833, 37syl 17 . . . . . . . . . . . 12 (𝜑𝐻𝑋)
39383ad2ant1 1082 . . . . . . . . . . 11 ((𝜑𝐵𝐻𝐶𝑋) → 𝐻𝑋)
4039, 1sseldd 3604 . . . . . . . . . 10 ((𝜑𝐵𝐻𝐶𝑋) → 𝐵𝑋)
41 sylow2b.a . . . . . . . . . . 11 + = (+g𝐺)
4222, 41grpcl 17430 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
4336, 40, 5, 42syl3anc 1326 . . . . . . . . 9 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
4443adantr 481 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝐶) ∈ 𝑋)
4536adantr 481 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → 𝐺 ∈ Grp)
4640adantr 481 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → 𝐵𝑋)
4722subgss 17595 . . . . . . . . . . . . . 14 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
4821, 47syl 17 . . . . . . . . . . . . 13 (𝜑𝐾𝑋)
49 eqid 2622 . . . . . . . . . . . . . 14 (invg𝐺) = (invg𝐺)
5022, 49, 41, 2eqgval 17643 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝐾𝑋) → (𝐶 𝑧 ↔ (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)))
5135, 48, 50syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑧 ↔ (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)))
52513ad2ant1 1082 . . . . . . . . . . 11 ((𝜑𝐵𝐻𝐶𝑋) → (𝐶 𝑧 ↔ (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)))
5352biimpa 501 . . . . . . . . . 10 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾))
5453simp2d 1074 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → 𝑧𝑋)
5522, 41grpcl 17430 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝑧𝑋) → (𝐵 + 𝑧) ∈ 𝑋)
5645, 46, 54, 55syl3anc 1326 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝑧) ∈ 𝑋)
5722, 49grpinvcl 17467 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐵 + 𝐶) ∈ 𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋)
5836, 43, 57syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋)
5958adantr 481 . . . . . . . . . . 11 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋)
6022, 41grpass 17431 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋𝐵𝑋𝑧𝑋)) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)))
6145, 59, 46, 54, 60syl13anc 1328 . . . . . . . . . 10 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)))
6222, 41, 49grpinvadd 17493 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6336, 40, 5, 62syl3anc 1326 . . . . . . . . . . . . . . 15 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6422, 49grpinvcl 17467 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝐶𝑋) → ((invg𝐺)‘𝐶) ∈ 𝑋)
6536, 5, 64syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘𝐶) ∈ 𝑋)
66 eqid 2622 . . . . . . . . . . . . . . . . 17 (-g𝐺) = (-g𝐺)
6722, 41, 49, 66grpsubval 17465 . . . . . . . . . . . . . . . 16 ((((invg𝐺)‘𝐶) ∈ 𝑋𝐵𝑋) → (((invg𝐺)‘𝐶)(-g𝐺)𝐵) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6865, 40, 67syl2anc 693 . . . . . . . . . . . . . . 15 ((𝜑𝐵𝐻𝐶𝑋) → (((invg𝐺)‘𝐶)(-g𝐺)𝐵) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6963, 68eqtr4d 2659 . . . . . . . . . . . . . 14 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) = (((invg𝐺)‘𝐶)(-g𝐺)𝐵))
7069oveq1d 6665 . . . . . . . . . . . . 13 ((𝜑𝐵𝐻𝐶𝑋) → (((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) = ((((invg𝐺)‘𝐶)(-g𝐺)𝐵) + 𝐵))
7122, 41, 66grpnpcan 17507 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐶) ∈ 𝑋𝐵𝑋) → ((((invg𝐺)‘𝐶)(-g𝐺)𝐵) + 𝐵) = ((invg𝐺)‘𝐶))
7236, 65, 40, 71syl3anc 1326 . . . . . . . . . . . . 13 ((𝜑𝐵𝐻𝐶𝑋) → ((((invg𝐺)‘𝐶)(-g𝐺)𝐵) + 𝐵) = ((invg𝐺)‘𝐶))
7370, 72eqtrd 2656 . . . . . . . . . . . 12 ((𝜑𝐵𝐻𝐶𝑋) → (((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) = ((invg𝐺)‘𝐶))
7473oveq1d 6665 . . . . . . . . . . 11 ((𝜑𝐵𝐻𝐶𝑋) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘𝐶) + 𝑧))
7574adantr 481 . . . . . . . . . 10 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘𝐶) + 𝑧))
7661, 75eqtr3d 2658 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) = (((invg𝐺)‘𝐶) + 𝑧))
7753simp3d 1075 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)
7876, 77eqeltrd 2701 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)
7922, 49, 41, 2eqgval 17643 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐾𝑋) → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
8035, 48, 79syl2anc 693 . . . . . . . . . 10 (𝜑 → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
81803ad2ant1 1082 . . . . . . . . 9 ((𝜑𝐵𝐻𝐶𝑋) → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
8281adantr 481 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
8344, 56, 78, 82mpbir3and 1245 . . . . . . 7 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝐶) (𝐵 + 𝑧))
84 ovex 6678 . . . . . . . 8 (𝐵 + 𝑧) ∈ V
85 ovex 6678 . . . . . . . 8 (𝐵 + 𝐶) ∈ V
8684, 85elec 7786 . . . . . . 7 ((𝐵 + 𝑧) ∈ [(𝐵 + 𝐶)] ↔ (𝐵 + 𝐶) (𝐵 + 𝑧))
8783, 86sylibr 224 . . . . . 6 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝑧) ∈ [(𝐵 + 𝐶)] )
8832, 87syldan 487 . . . . 5 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝑧 ∈ [𝐶] ) → (𝐵 + 𝑧) ∈ [(𝐵 + 𝐶)] )
89 eqid 2622 . . . . 5 (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧))
9088, 89fmptd 6385 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] ⟶[(𝐵 + 𝐶)] )
91 frn 6053 . . . 4 ((𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] ⟶[(𝐵 + 𝐶)] → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ⊆ [(𝐵 + 𝐶)] )
9290, 91syl 17 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ⊆ [(𝐵 + 𝐶)] )
93 eqid 2622 . . . . . . . . . . 11 (𝑧𝑋 ↦ (𝐵 + 𝑧)) = (𝑧𝑋 ↦ (𝐵 + 𝑧))
9422, 41, 93grplmulf1o 17489 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1-onto𝑋)
9536, 40, 94syl2anc 693 . . . . . . . . 9 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1-onto𝑋)
96 f1of1 6136 . . . . . . . . 9 ((𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1-onto𝑋 → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1𝑋)
9795, 96syl 17 . . . . . . . 8 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1𝑋)
9824ecss 7788 . . . . . . . . 9 (𝜑 → [𝐶] 𝑋)
99983ad2ant1 1082 . . . . . . . 8 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] 𝑋)
100 f1ssres 6108 . . . . . . . 8 (((𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1𝑋 ∧ [𝐶] 𝑋) → ((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋)
10197, 99, 100syl2anc 693 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → ((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋)
102 resmpt 5449 . . . . . . . 8 ([𝐶] 𝑋 → ((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
103 f1eq1 6096 . . . . . . . 8 (((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) → (((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋 ↔ (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋))
10499, 102, 1033syl 18 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → (((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋 ↔ (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋))
105101, 104mpbid 222 . . . . . 6 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋)
106 f1f1orn 6148 . . . . . 6 ((𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋 → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1-onto→ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
107105, 106syl 17 . . . . 5 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1-onto→ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
10815f1oen 7976 . . . . 5 ((𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1-onto→ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) → [𝐶] ≈ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
109 ensym 8005 . . . . 5 ([𝐶] ≈ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [𝐶] )
110107, 108, 1093syl 18 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [𝐶] )
111213ad2ant1 1082 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → 𝐾 ∈ (SubGrp‘𝐺))
11222, 2eqgen 17647 . . . . . . 7 ((𝐾 ∈ (SubGrp‘𝐺) ∧ [𝐶] ∈ (𝑋 / )) → 𝐾 ≈ [𝐶] )
113111, 7, 112syl2anc 693 . . . . . 6 ((𝜑𝐵𝐻𝐶𝑋) → 𝐾 ≈ [𝐶] )
114 ensym 8005 . . . . . 6 (𝐾 ≈ [𝐶] → [𝐶] 𝐾)
115113, 114syl 17 . . . . 5 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] 𝐾)
116 ecelqsg 7802 . . . . . . 7 (( ∈ V ∧ (𝐵 + 𝐶) ∈ 𝑋) → [(𝐵 + 𝐶)] ∈ (𝑋 / ))
1174, 43, 116sylancr 695 . . . . . 6 ((𝜑𝐵𝐻𝐶𝑋) → [(𝐵 + 𝐶)] ∈ (𝑋 / ))
11822, 2eqgen 17647 . . . . . 6 ((𝐾 ∈ (SubGrp‘𝐺) ∧ [(𝐵 + 𝐶)] ∈ (𝑋 / )) → 𝐾 ≈ [(𝐵 + 𝐶)] )
119111, 117, 118syl2anc 693 . . . . 5 ((𝜑𝐵𝐻𝐶𝑋) → 𝐾 ≈ [(𝐵 + 𝐶)] )
120 entr 8008 . . . . 5 (([𝐶] 𝐾𝐾 ≈ [(𝐵 + 𝐶)] ) → [𝐶] ≈ [(𝐵 + 𝐶)] )
121115, 119, 120syl2anc 693 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] ≈ [(𝐵 + 𝐶)] )
122 entr 8008 . . . 4 ((ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [𝐶] ∧ [𝐶] ≈ [(𝐵 + 𝐶)] ) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [(𝐵 + 𝐶)] )
123110, 121, 122syl2anc 693 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [(𝐵 + 𝐶)] )
124 fisseneq 8171 . . 3 (([(𝐵 + 𝐶)] ∈ Fin ∧ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ⊆ [(𝐵 + 𝐶)] ∧ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [(𝐵 + 𝐶)] ) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) = [(𝐵 + 𝐶)] )
12528, 92, 123, 124syl3anc 1326 . 2 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) = [(𝐵 + 𝐶)] )
12619, 125eqtrd 2656 1 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 · [𝐶] ) = [(𝐵 + 𝐶)] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574   class class class wbr 4653  cmpt 4729  ran crn 5115  cres 5116  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652   Er wer 7739  [cec 7740   / cqs 7741  cen 7952  Fincfn 7955  Basecbs 15857  +gcplusg 15941  Grpcgrp 17422  invgcminusg 17423  -gcsg 17424  SubGrpcsubg 17588   ~QG cqg 17590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-ec 7744  df-qs 7748  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-eqg 17593
This theorem is referenced by:  sylow2blem2  18036  sylow2blem3  18037
  Copyright terms: Public domain W3C validator