Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faeval Structured version   Visualization version   GIF version

Theorem faeval 30309
Description: Value of the 'almost everywhere' relation for a given relation and measure. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Assertion
Ref Expression
faeval ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
Distinct variable groups:   𝑓,𝑔,𝑥,𝑀   𝑅,𝑓,𝑔,𝑥

Proof of Theorem faeval
Dummy variables 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . . 8 ((𝑟 = 𝑅𝑚 = 𝑀) → 𝑟 = 𝑅)
21dmeqd 5326 . . . . . . 7 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑟 = dom 𝑅)
3 simpr 477 . . . . . . . . 9 ((𝑟 = 𝑅𝑚 = 𝑀) → 𝑚 = 𝑀)
43dmeqd 5326 . . . . . . . 8 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
54unieqd 4446 . . . . . . 7 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
62, 5oveq12d 6668 . . . . . 6 ((𝑟 = 𝑅𝑚 = 𝑀) → (dom 𝑟𝑚 dom 𝑚) = (dom 𝑅𝑚 dom 𝑀))
76eleq2d 2687 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → (𝑓 ∈ (dom 𝑟𝑚 dom 𝑚) ↔ 𝑓 ∈ (dom 𝑅𝑚 dom 𝑀)))
86eleq2d 2687 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → (𝑔 ∈ (dom 𝑟𝑚 dom 𝑚) ↔ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)))
97, 8anbi12d 747 . . . 4 ((𝑟 = 𝑅𝑚 = 𝑀) → ((𝑓 ∈ (dom 𝑟𝑚 dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟𝑚 dom 𝑚)) ↔ (𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀))))
101breqd 4664 . . . . . 6 ((𝑟 = 𝑅𝑚 = 𝑀) → ((𝑓𝑥)𝑟(𝑔𝑥) ↔ (𝑓𝑥)𝑅(𝑔𝑥)))
115, 10rabeqbidv 3195 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)} = {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)})
1211, 3breq12d 4666 . . . 4 ((𝑟 = 𝑅𝑚 = 𝑀) → ({𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚 ↔ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀))
139, 12anbi12d 747 . . 3 ((𝑟 = 𝑅𝑚 = 𝑀) → (((𝑓 ∈ (dom 𝑟𝑚 dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟𝑚 dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚) ↔ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)))
1413opabbidv 4716 . 2 ((𝑟 = 𝑅𝑚 = 𝑀) → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑟𝑚 dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟𝑚 dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
15 df-fae 30308 . 2 ~ a.e. = (𝑟 ∈ V, 𝑚 ran measures ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑟𝑚 dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟𝑚 dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚)})
16 ovex 6678 . . . 4 (dom 𝑅𝑚 dom 𝑀) ∈ V
1716, 16xpex 6962 . . 3 ((dom 𝑅𝑚 dom 𝑀) × (dom 𝑅𝑚 dom 𝑀)) ∈ V
18 opabssxp 5193 . . 3 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)} ⊆ ((dom 𝑅𝑚 dom 𝑀) × (dom 𝑅𝑚 dom 𝑀))
1917, 18ssexi 4803 . 2 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)} ∈ V
2014, 15, 19ovmpt2a 6791 1 ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200   cuni 4436   class class class wbr 4653  {copab 4712   × cxp 5112  dom cdm 5114  ran crn 5115  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  measurescmeas 30258  a.e.cae 30300  ~ a.e.cfae 30301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fae 30308
This theorem is referenced by:  relfae  30310  brfae  30311
  Copyright terms: Public domain W3C validator