Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faeval Structured version   Visualization version   Unicode version

Theorem faeval 30309
Description: Value of the 'almost everywhere' relation for a given relation and measure. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Assertion
Ref Expression
faeval  |-  ( ( R  e.  _V  /\  M  e.  U. ran measures )  -> 
( R~ a.e. M )  =  { <. f ,  g
>.  |  ( (
f  e.  ( dom 
R  ^m  U. dom  M
)  /\  g  e.  ( dom  R  ^m  U. dom  M ) )  /\  { x  e.  U. dom  M  |  ( f `  x ) R ( g `  x ) }a.e. M ) } )
Distinct variable groups:    f, g, x, M    R, f, g, x

Proof of Theorem faeval
Dummy variables  m  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . . 8  |-  ( ( r  =  R  /\  m  =  M )  ->  r  =  R )
21dmeqd 5326 . . . . . . 7  |-  ( ( r  =  R  /\  m  =  M )  ->  dom  r  =  dom  R )
3 simpr 477 . . . . . . . . 9  |-  ( ( r  =  R  /\  m  =  M )  ->  m  =  M )
43dmeqd 5326 . . . . . . . 8  |-  ( ( r  =  R  /\  m  =  M )  ->  dom  m  =  dom  M )
54unieqd 4446 . . . . . . 7  |-  ( ( r  =  R  /\  m  =  M )  ->  U. dom  m  = 
U. dom  M )
62, 5oveq12d 6668 . . . . . 6  |-  ( ( r  =  R  /\  m  =  M )  ->  ( dom  r  ^m  U.
dom  m )  =  ( dom  R  ^m  U.
dom  M ) )
76eleq2d 2687 . . . . 5  |-  ( ( r  =  R  /\  m  =  M )  ->  ( f  e.  ( dom  r  ^m  U. dom  m )  <->  f  e.  ( dom  R  ^m  U. dom  M ) ) )
86eleq2d 2687 . . . . 5  |-  ( ( r  =  R  /\  m  =  M )  ->  ( g  e.  ( dom  r  ^m  U. dom  m )  <->  g  e.  ( dom  R  ^m  U. dom  M ) ) )
97, 8anbi12d 747 . . . 4  |-  ( ( r  =  R  /\  m  =  M )  ->  ( ( f  e.  ( dom  r  ^m  U.
dom  m )  /\  g  e.  ( dom  r  ^m  U. dom  m
) )  <->  ( f  e.  ( dom  R  ^m  U.
dom  M )  /\  g  e.  ( dom  R  ^m  U. dom  M
) ) ) )
101breqd 4664 . . . . . 6  |-  ( ( r  =  R  /\  m  =  M )  ->  ( ( f `  x ) r ( g `  x )  <-> 
( f `  x
) R ( g `
 x ) ) )
115, 10rabeqbidv 3195 . . . . 5  |-  ( ( r  =  R  /\  m  =  M )  ->  { x  e.  U. dom  m  |  ( f `
 x ) r ( g `  x
) }  =  {
x  e.  U. dom  M  |  ( f `  x ) R ( g `  x ) } )
1211, 3breq12d 4666 . . . 4  |-  ( ( r  =  R  /\  m  =  M )  ->  ( { x  e. 
U. dom  m  | 
( f `  x
) r ( g `
 x ) }a.e. m  <->  { x  e.  U. dom  M  |  ( f `
 x ) R ( g `  x
) }a.e. M ) )
139, 12anbi12d 747 . . 3  |-  ( ( r  =  R  /\  m  =  M )  ->  ( ( ( f  e.  ( dom  r  ^m  U. dom  m )  /\  g  e.  ( dom  r  ^m  U. dom  m ) )  /\  { x  e.  U. dom  m  |  ( f `  x ) r ( g `  x ) }a.e. m )  <->  ( (
f  e.  ( dom 
R  ^m  U. dom  M
)  /\  g  e.  ( dom  R  ^m  U. dom  M ) )  /\  { x  e.  U. dom  M  |  ( f `  x ) R ( g `  x ) }a.e. M ) ) )
1413opabbidv 4716 . 2  |-  ( ( r  =  R  /\  m  =  M )  ->  { <. f ,  g
>.  |  ( (
f  e.  ( dom  r  ^m  U. dom  m )  /\  g  e.  ( dom  r  ^m  U.
dom  m ) )  /\  { x  e. 
U. dom  m  | 
( f `  x
) r ( g `
 x ) }a.e. m ) }  =  { <. f ,  g
>.  |  ( (
f  e.  ( dom 
R  ^m  U. dom  M
)  /\  g  e.  ( dom  R  ^m  U. dom  M ) )  /\  { x  e.  U. dom  M  |  ( f `  x ) R ( g `  x ) }a.e. M ) } )
15 df-fae 30308 . 2  |- ~ a.e.  =  ( r  e.  _V ,  m  e.  U. ran measures  |->  { <. f ,  g >.  |  ( ( f  e.  ( dom  r  ^m  U. dom  m )  /\  g  e.  ( dom  r  ^m  U.
dom  m ) )  /\  { x  e. 
U. dom  m  | 
( f `  x
) r ( g `
 x ) }a.e. m ) } )
16 ovex 6678 . . . 4  |-  ( dom 
R  ^m  U. dom  M
)  e.  _V
1716, 16xpex 6962 . . 3  |-  ( ( dom  R  ^m  U. dom  M )  X.  ( dom  R  ^m  U. dom  M ) )  e.  _V
18 opabssxp 5193 . . 3  |-  { <. f ,  g >.  |  ( ( f  e.  ( dom  R  ^m  U. dom  M )  /\  g  e.  ( dom  R  ^m  U.
dom  M ) )  /\  { x  e. 
U. dom  M  | 
( f `  x
) R ( g `
 x ) }a.e. M ) }  C_  ( ( dom  R  ^m  U. dom  M )  X.  ( dom  R  ^m  U. dom  M ) )
1917, 18ssexi 4803 . 2  |-  { <. f ,  g >.  |  ( ( f  e.  ( dom  R  ^m  U. dom  M )  /\  g  e.  ( dom  R  ^m  U.
dom  M ) )  /\  { x  e. 
U. dom  M  | 
( f `  x
) R ( g `
 x ) }a.e. M ) }  e.  _V
2014, 15, 19ovmpt2a 6791 1  |-  ( ( R  e.  _V  /\  M  e.  U. ran measures )  -> 
( R~ a.e. M )  =  { <. f ,  g
>.  |  ( (
f  e.  ( dom 
R  ^m  U. dom  M
)  /\  g  e.  ( dom  R  ^m  U. dom  M ) )  /\  { x  e.  U. dom  M  |  ( f `  x ) R ( g `  x ) }a.e. M ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   U.cuni 4436   class class class wbr 4653   {copab 4712    X. cxp 5112   dom cdm 5114   ran crn 5115   ` cfv 5888  (class class class)co 6650    ^m cmap 7857  measurescmeas 30258  a.e.cae 30300  ~ a.e.cfae 30301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fae 30308
This theorem is referenced by:  relfae  30310  brfae  30311
  Copyright terms: Public domain W3C validator