MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclstopon Structured version   Visualization version   GIF version

Theorem fclstopon 21816
Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclstopon (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋)))

Proof of Theorem fclstopon
StepHypRef Expression
1 fclstop 21815 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
2 istopon 20717 . . . 4 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
32baib 944 . . 3 (𝐽 ∈ Top → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = 𝐽))
41, 3syl 17 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = 𝐽))
5 eqid 2622 . . . . 5 𝐽 = 𝐽
65fclsfil 21814 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
7 fveq2 6191 . . . . 5 (𝑋 = 𝐽 → (Fil‘𝑋) = (Fil‘ 𝐽))
87eleq2d 2687 . . . 4 (𝑋 = 𝐽 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘ 𝐽)))
96, 8syl5ibrcom 237 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑋 = 𝐽𝐹 ∈ (Fil‘𝑋)))
10 filunibas 21685 . . . . 5 (𝐹 ∈ (Fil‘ 𝐽) → 𝐹 = 𝐽)
116, 10syl 17 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 = 𝐽)
12 filunibas 21685 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
1312eqeq1d 2624 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ( 𝐹 = 𝐽𝑋 = 𝐽))
1411, 13syl5ibcom 235 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐹 ∈ (Fil‘𝑋) → 𝑋 = 𝐽))
159, 14impbid 202 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑋 = 𝐽𝐹 ∈ (Fil‘𝑋)))
164, 15bitrd 268 1 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990   cuni 4436  cfv 5888  (class class class)co 6650  Topctop 20698  TopOnctopon 20715  Filcfil 21649   fClus cfcls 21740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-topon 20716  df-fil 21650  df-fcls 21745
This theorem is referenced by:  fclsopni  21819  fclselbas  21820  fclsss1  21826  fclsss2  21827  fclscf  21829
  Copyright terms: Public domain W3C validator