MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istopon Structured version   Visualization version   GIF version

Theorem istopon 20717
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
istopon (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))

Proof of Theorem istopon
Dummy variables 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6221 . 2 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ V)
2 uniexg 6955 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ V)
3 eleq1 2689 . . . 4 (𝐵 = 𝐽 → (𝐵 ∈ V ↔ 𝐽 ∈ V))
42, 3syl5ibrcom 237 . . 3 (𝐽 ∈ Top → (𝐵 = 𝐽𝐵 ∈ V))
54imp 445 . 2 ((𝐽 ∈ Top ∧ 𝐵 = 𝐽) → 𝐵 ∈ V)
6 eqeq1 2626 . . . . . 6 (𝑏 = 𝐵 → (𝑏 = 𝑗𝐵 = 𝑗))
76rabbidv 3189 . . . . 5 (𝑏 = 𝐵 → {𝑗 ∈ Top ∣ 𝑏 = 𝑗} = {𝑗 ∈ Top ∣ 𝐵 = 𝑗})
8 df-topon 20716 . . . . 5 TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
9 vpwex 4849 . . . . . . 7 𝒫 𝑏 ∈ V
109pwex 4848 . . . . . 6 𝒫 𝒫 𝑏 ∈ V
11 rabss 3679 . . . . . . 7 ({𝑗 ∈ Top ∣ 𝑏 = 𝑗} ⊆ 𝒫 𝒫 𝑏 ↔ ∀𝑗 ∈ Top (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏))
12 pwuni 4474 . . . . . . . . . 10 𝑗 ⊆ 𝒫 𝑗
13 pweq 4161 . . . . . . . . . 10 (𝑏 = 𝑗 → 𝒫 𝑏 = 𝒫 𝑗)
1412, 13syl5sseqr 3654 . . . . . . . . 9 (𝑏 = 𝑗𝑗 ⊆ 𝒫 𝑏)
15 selpw 4165 . . . . . . . . 9 (𝑗 ∈ 𝒫 𝒫 𝑏𝑗 ⊆ 𝒫 𝑏)
1614, 15sylibr 224 . . . . . . . 8 (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏)
1716a1i 11 . . . . . . 7 (𝑗 ∈ Top → (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏))
1811, 17mprgbir 2927 . . . . . 6 {𝑗 ∈ Top ∣ 𝑏 = 𝑗} ⊆ 𝒫 𝒫 𝑏
1910, 18ssexi 4803 . . . . 5 {𝑗 ∈ Top ∣ 𝑏 = 𝑗} ∈ V
207, 8, 19fvmpt3i 6287 . . . 4 (𝐵 ∈ V → (TopOn‘𝐵) = {𝑗 ∈ Top ∣ 𝐵 = 𝑗})
2120eleq2d 2687 . . 3 (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = 𝑗}))
22 unieq 4444 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
2322eqeq2d 2632 . . . 4 (𝑗 = 𝐽 → (𝐵 = 𝑗𝐵 = 𝐽))
2423elrab 3363 . . 3 (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
2521, 24syl6bb 276 . 2 (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽)))
261, 5, 25pm5.21nii 368 1 (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574  𝒫 cpw 4158   cuni 4436  cfv 5888  Topctop 20698  TopOnctopon 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topon 20716
This theorem is referenced by:  topontop  20718  toponuni  20719  toptopon  20722  toponcom  20732  istps2  20739  tgtopon  20775  distopon  20801  indistopon  20805  fctop  20808  cctop  20810  ppttop  20811  epttop  20813  mretopd  20896  toponmre  20897  resttopon  20965  resttopon2  20972  kgentopon  21341  txtopon  21394  pttopon  21399  xkotopon  21403  qtoptopon  21507  flimtopon  21774  fclstopon  21816  fclsfnflim  21831  utoptopon  22040  qtopt1  29902  neibastop1  32354  onsuctopon  32433  rfcnpre1  39178  cnfex  39187  icccncfext  40100  stoweidlem47  40264
  Copyright terms: Public domain W3C validator