Proof of Theorem ffvresb
| Step | Hyp | Ref
| Expression |
| 1 | | fdm 6051 |
. . . . . 6
⊢ ((𝐹 ↾ 𝐴):𝐴⟶𝐵 → dom (𝐹 ↾ 𝐴) = 𝐴) |
| 2 | | dmres 5419 |
. . . . . . 7
⊢ dom
(𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) |
| 3 | | inss2 3834 |
. . . . . . 7
⊢ (𝐴 ∩ dom 𝐹) ⊆ dom 𝐹 |
| 4 | 2, 3 | eqsstri 3635 |
. . . . . 6
⊢ dom
(𝐹 ↾ 𝐴) ⊆ dom 𝐹 |
| 5 | 1, 4 | syl6eqssr 3656 |
. . . . 5
⊢ ((𝐹 ↾ 𝐴):𝐴⟶𝐵 → 𝐴 ⊆ dom 𝐹) |
| 6 | 5 | sselda 3603 |
. . . 4
⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝐹) |
| 7 | | fvres 6207 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑥) = (𝐹‘𝑥)) |
| 8 | 7 | adantl 482 |
. . . . 5
⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) = (𝐹‘𝑥)) |
| 9 | | ffvelrn 6357 |
. . . . 5
⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) ∈ 𝐵) |
| 10 | 8, 9 | eqeltrrd 2702 |
. . . 4
⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| 11 | 6, 10 | jca 554 |
. . 3
⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)) |
| 12 | 11 | ralrimiva 2966 |
. 2
⊢ ((𝐹 ↾ 𝐴):𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)) |
| 13 | | simpl 473 |
. . . . . . 7
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → 𝑥 ∈ dom 𝐹) |
| 14 | 13 | ralimi 2952 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ 𝐴 𝑥 ∈ dom 𝐹) |
| 15 | | dfss3 3592 |
. . . . . 6
⊢ (𝐴 ⊆ dom 𝐹 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ dom 𝐹) |
| 16 | 14, 15 | sylibr 224 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → 𝐴 ⊆ dom 𝐹) |
| 17 | | funfn 5918 |
. . . . . 6
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
| 18 | | fnssres 6004 |
. . . . . 6
⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴) Fn 𝐴) |
| 19 | 17, 18 | sylanb 489 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴) Fn 𝐴) |
| 20 | 16, 19 | sylan2 491 |
. . . 4
⊢ ((Fun
𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)) → (𝐹 ↾ 𝐴) Fn 𝐴) |
| 21 | | simpr 477 |
. . . . . . . 8
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → (𝐹‘𝑥) ∈ 𝐵) |
| 22 | 7 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → (((𝐹 ↾ 𝐴)‘𝑥) ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) |
| 23 | 21, 22 | syl5ibr 236 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → ((𝐹 ↾ 𝐴)‘𝑥) ∈ 𝐵)) |
| 24 | 23 | ralimia 2950 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ 𝐴 ((𝐹 ↾ 𝐴)‘𝑥) ∈ 𝐵) |
| 25 | 24 | adantl 482 |
. . . . 5
⊢ ((Fun
𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)) → ∀𝑥 ∈ 𝐴 ((𝐹 ↾ 𝐴)‘𝑥) ∈ 𝐵) |
| 26 | | fnfvrnss 6390 |
. . . . 5
⊢ (((𝐹 ↾ 𝐴) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝐹 ↾ 𝐴)‘𝑥) ∈ 𝐵) → ran (𝐹 ↾ 𝐴) ⊆ 𝐵) |
| 27 | 20, 25, 26 | syl2anc 693 |
. . . 4
⊢ ((Fun
𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)) → ran (𝐹 ↾ 𝐴) ⊆ 𝐵) |
| 28 | | df-f 5892 |
. . . 4
⊢ ((𝐹 ↾ 𝐴):𝐴⟶𝐵 ↔ ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ ran (𝐹 ↾ 𝐴) ⊆ 𝐵)) |
| 29 | 20, 27, 28 | sylanbrc 698 |
. . 3
⊢ ((Fun
𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)) → (𝐹 ↾ 𝐴):𝐴⟶𝐵) |
| 30 | 29 | ex 450 |
. 2
⊢ (Fun
𝐹 → (∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → (𝐹 ↾ 𝐴):𝐴⟶𝐵)) |
| 31 | 12, 30 | impbid2 216 |
1
⊢ (Fun
𝐹 → ((𝐹 ↾ 𝐴):𝐴⟶𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) |