MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffvresb Structured version   Visualization version   Unicode version

Theorem ffvresb 6394
Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
ffvresb  |-  ( Fun 
F  ->  ( ( F  |`  A ) : A --> B  <->  A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  B ) ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem ffvresb
StepHypRef Expression
1 fdm 6051 . . . . . 6  |-  ( ( F  |`  A ) : A --> B  ->  dom  ( F  |`  A )  =  A )
2 dmres 5419 . . . . . . 7  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
3 inss2 3834 . . . . . . 7  |-  ( A  i^i  dom  F )  C_ 
dom  F
42, 3eqsstri 3635 . . . . . 6  |-  dom  ( F  |`  A )  C_  dom  F
51, 4syl6eqssr 3656 . . . . 5  |-  ( ( F  |`  A ) : A --> B  ->  A  C_ 
dom  F )
65sselda 3603 . . . 4  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  x  e.  dom  F
)
7 fvres 6207 . . . . . 6  |-  ( x  e.  A  ->  (
( F  |`  A ) `
 x )  =  ( F `  x
) )
87adantl 482 . . . . 5  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  ( ( F  |`  A ) `  x
)  =  ( F `
 x ) )
9 ffvelrn 6357 . . . . 5  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  ( ( F  |`  A ) `  x
)  e.  B )
108, 9eqeltrrd 2702 . . . 4  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
116, 10jca 554 . . 3  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  ( x  e.  dom  F  /\  ( F `  x )  e.  B
) )
1211ralrimiva 2966 . 2  |-  ( ( F  |`  A ) : A --> B  ->  A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  B ) )
13 simpl 473 . . . . . . 7  |-  ( ( x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  x  e.  dom  F )
1413ralimi 2952 . . . . . 6  |-  ( A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  A. x  e.  A  x  e.  dom  F )
15 dfss3 3592 . . . . . 6  |-  ( A 
C_  dom  F  <->  A. x  e.  A  x  e.  dom  F )
1614, 15sylibr 224 . . . . 5  |-  ( A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  A  C_  dom  F )
17 funfn 5918 . . . . . 6  |-  ( Fun 
F  <->  F  Fn  dom  F )
18 fnssres 6004 . . . . . 6  |-  ( ( F  Fn  dom  F  /\  A  C_  dom  F
)  ->  ( F  |`  A )  Fn  A
)
1917, 18sylanb 489 . . . . 5  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F  |`  A )  Fn  A )
2016, 19sylan2 491 . . . 4  |-  ( ( Fun  F  /\  A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B ) )  ->  ( F  |`  A )  Fn  A
)
21 simpr 477 . . . . . . . 8  |-  ( ( x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  ( F `  x )  e.  B
)
227eleq1d 2686 . . . . . . . 8  |-  ( x  e.  A  ->  (
( ( F  |`  A ) `  x
)  e.  B  <->  ( F `  x )  e.  B
) )
2321, 22syl5ibr 236 . . . . . . 7  |-  ( x  e.  A  ->  (
( x  e.  dom  F  /\  ( F `  x )  e.  B
)  ->  ( ( F  |`  A ) `  x )  e.  B
) )
2423ralimia 2950 . . . . . 6  |-  ( A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  A. x  e.  A  ( ( F  |`  A ) `  x
)  e.  B )
2524adantl 482 . . . . 5  |-  ( ( Fun  F  /\  A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B ) )  ->  A. x  e.  A  ( ( F  |`  A ) `  x )  e.  B
)
26 fnfvrnss 6390 . . . . 5  |-  ( ( ( F  |`  A )  Fn  A  /\  A. x  e.  A  (
( F  |`  A ) `
 x )  e.  B )  ->  ran  ( F  |`  A ) 
C_  B )
2720, 25, 26syl2anc 693 . . . 4  |-  ( ( Fun  F  /\  A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B ) )  ->  ran  ( F  |`  A )  C_  B
)
28 df-f 5892 . . . 4  |-  ( ( F  |`  A ) : A --> B  <->  ( ( F  |`  A )  Fn  A  /\  ran  ( F  |`  A )  C_  B ) )
2920, 27, 28sylanbrc 698 . . 3  |-  ( ( Fun  F  /\  A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B ) )  ->  ( F  |`  A ) : A --> B )
3029ex 450 . 2  |-  ( Fun 
F  ->  ( A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  ( F  |`  A ) : A --> B ) )
3112, 30impbid2 216 1  |-  ( Fun 
F  ->  ( ( F  |`  A ) : A --> B  <->  A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   dom cdm 5114   ran crn 5115    |` cres 5116   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  lmbr2  21063  lmff  21105  lmmbr2  23057  iscau2  23075  relogbf  24529  sseqf  30454  rpsqrtcn  30671  climrescn  39980  climxrrelem  39981  climxrre  39982  xlimxrre  40057  fourierdlem97  40420
  Copyright terms: Public domain W3C validator