| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffvresb | Structured version Visualization version Unicode version | ||
| Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| ffvresb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 6051 |
. . . . . 6
| |
| 2 | dmres 5419 |
. . . . . . 7
| |
| 3 | inss2 3834 |
. . . . . . 7
| |
| 4 | 2, 3 | eqsstri 3635 |
. . . . . 6
|
| 5 | 1, 4 | syl6eqssr 3656 |
. . . . 5
|
| 6 | 5 | sselda 3603 |
. . . 4
|
| 7 | fvres 6207 |
. . . . . 6
| |
| 8 | 7 | adantl 482 |
. . . . 5
|
| 9 | ffvelrn 6357 |
. . . . 5
| |
| 10 | 8, 9 | eqeltrrd 2702 |
. . . 4
|
| 11 | 6, 10 | jca 554 |
. . 3
|
| 12 | 11 | ralrimiva 2966 |
. 2
|
| 13 | simpl 473 |
. . . . . . 7
| |
| 14 | 13 | ralimi 2952 |
. . . . . 6
|
| 15 | dfss3 3592 |
. . . . . 6
| |
| 16 | 14, 15 | sylibr 224 |
. . . . 5
|
| 17 | funfn 5918 |
. . . . . 6
| |
| 18 | fnssres 6004 |
. . . . . 6
| |
| 19 | 17, 18 | sylanb 489 |
. . . . 5
|
| 20 | 16, 19 | sylan2 491 |
. . . 4
|
| 21 | simpr 477 |
. . . . . . . 8
| |
| 22 | 7 | eleq1d 2686 |
. . . . . . . 8
|
| 23 | 21, 22 | syl5ibr 236 |
. . . . . . 7
|
| 24 | 23 | ralimia 2950 |
. . . . . 6
|
| 25 | 24 | adantl 482 |
. . . . 5
|
| 26 | fnfvrnss 6390 |
. . . . 5
| |
| 27 | 20, 25, 26 | syl2anc 693 |
. . . 4
|
| 28 | df-f 5892 |
. . . 4
| |
| 29 | 20, 27, 28 | sylanbrc 698 |
. . 3
|
| 30 | 29 | ex 450 |
. 2
|
| 31 | 12, 30 | impbid2 216 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 |
| This theorem is referenced by: lmbr2 21063 lmff 21105 lmmbr2 23057 iscau2 23075 relogbf 24529 sseqf 30454 rpsqrtcn 30671 climrescn 39980 climxrrelem 39981 climxrre 39982 xlimxrre 40057 fourierdlem97 40420 |
| Copyright terms: Public domain | W3C validator |