Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fimarab Structured version   Visualization version   GIF version

Theorem fimarab 29445
Description: Expressing the image of a set as a restricted abstract builder. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Assertion
Ref Expression
fimarab ((𝐹:𝐴𝐵𝑋𝐴) → (𝐹𝑋) = {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem fimarab
StepHypRef Expression
1 nfv 1843 . 2 𝑦(𝐹:𝐴𝐵𝑋𝐴)
2 nfcv 2764 . 2 𝑦(𝐹𝑋)
3 nfrab1 3122 . 2 𝑦{𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦}
4 ffn 6045 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 fvelimab 6253 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑦 ∈ (𝐹𝑋) ↔ ∃𝑥𝑋 (𝐹𝑥) = 𝑦))
65anbi2d 740 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝑦𝐵𝑦 ∈ (𝐹𝑋)) ↔ (𝑦𝐵 ∧ ∃𝑥𝑋 (𝐹𝑥) = 𝑦)))
74, 6sylan 488 . . 3 ((𝐹:𝐴𝐵𝑋𝐴) → ((𝑦𝐵𝑦 ∈ (𝐹𝑋)) ↔ (𝑦𝐵 ∧ ∃𝑥𝑋 (𝐹𝑥) = 𝑦)))
8 imassrn 5477 . . . . . . 7 (𝐹𝑋) ⊆ ran 𝐹
9 frn 6053 . . . . . . 7 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
108, 9syl5ss 3614 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
1110adantr 481 . . . . 5 ((𝐹:𝐴𝐵𝑋𝐴) → (𝐹𝑋) ⊆ 𝐵)
1211sseld 3602 . . . 4 ((𝐹:𝐴𝐵𝑋𝐴) → (𝑦 ∈ (𝐹𝑋) → 𝑦𝐵))
1312pm4.71rd 667 . . 3 ((𝐹:𝐴𝐵𝑋𝐴) → (𝑦 ∈ (𝐹𝑋) ↔ (𝑦𝐵𝑦 ∈ (𝐹𝑋))))
14 rabid 3116 . . . 4 (𝑦 ∈ {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦} ↔ (𝑦𝐵 ∧ ∃𝑥𝑋 (𝐹𝑥) = 𝑦))
1514a1i 11 . . 3 ((𝐹:𝐴𝐵𝑋𝐴) → (𝑦 ∈ {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦} ↔ (𝑦𝐵 ∧ ∃𝑥𝑋 (𝐹𝑥) = 𝑦)))
167, 13, 153bitr4d 300 . 2 ((𝐹:𝐴𝐵𝑋𝐴) → (𝑦 ∈ (𝐹𝑋) ↔ 𝑦 ∈ {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦}))
171, 2, 3, 16eqrd 3622 1 ((𝐹:𝐴𝐵𝑋𝐴) → (𝐹𝑋) = {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  wss 3574  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  locfinreflem  29907
  Copyright terms: Public domain W3C validator