Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fimarab Structured version   Visualization version   Unicode version

Theorem fimarab 29445
Description: Expressing the image of a set as a restricted abstract builder. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Assertion
Ref Expression
fimarab  |-  ( ( F : A --> B  /\  X  C_  A )  -> 
( F " X
)  =  { y  e.  B  |  E. x  e.  X  ( F `  x )  =  y } )
Distinct variable groups:    y, A    y, B    x, F, y   
x, X, y
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem fimarab
StepHypRef Expression
1 nfv 1843 . 2  |-  F/ y ( F : A --> B  /\  X  C_  A
)
2 nfcv 2764 . 2  |-  F/_ y
( F " X
)
3 nfrab1 3122 . 2  |-  F/_ y { y  e.  B  |  E. x  e.  X  ( F `  x )  =  y }
4 ffn 6045 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
5 fvelimab 6253 . . . . 5  |-  ( ( F  Fn  A  /\  X  C_  A )  -> 
( y  e.  ( F " X )  <->  E. x  e.  X  ( F `  x )  =  y ) )
65anbi2d 740 . . . 4  |-  ( ( F  Fn  A  /\  X  C_  A )  -> 
( ( y  e.  B  /\  y  e.  ( F " X
) )  <->  ( y  e.  B  /\  E. x  e.  X  ( F `  x )  =  y ) ) )
74, 6sylan 488 . . 3  |-  ( ( F : A --> B  /\  X  C_  A )  -> 
( ( y  e.  B  /\  y  e.  ( F " X
) )  <->  ( y  e.  B  /\  E. x  e.  X  ( F `  x )  =  y ) ) )
8 imassrn 5477 . . . . . . 7  |-  ( F
" X )  C_  ran  F
9 frn 6053 . . . . . . 7  |-  ( F : A --> B  ->  ran  F  C_  B )
108, 9syl5ss 3614 . . . . . 6  |-  ( F : A --> B  -> 
( F " X
)  C_  B )
1110adantr 481 . . . . 5  |-  ( ( F : A --> B  /\  X  C_  A )  -> 
( F " X
)  C_  B )
1211sseld 3602 . . . 4  |-  ( ( F : A --> B  /\  X  C_  A )  -> 
( y  e.  ( F " X )  ->  y  e.  B
) )
1312pm4.71rd 667 . . 3  |-  ( ( F : A --> B  /\  X  C_  A )  -> 
( y  e.  ( F " X )  <-> 
( y  e.  B  /\  y  e.  ( F " X ) ) ) )
14 rabid 3116 . . . 4  |-  ( y  e.  { y  e.  B  |  E. x  e.  X  ( F `  x )  =  y }  <->  ( y  e.  B  /\  E. x  e.  X  ( F `  x )  =  y ) )
1514a1i 11 . . 3  |-  ( ( F : A --> B  /\  X  C_  A )  -> 
( y  e.  {
y  e.  B  |  E. x  e.  X  ( F `  x )  =  y }  <->  ( y  e.  B  /\  E. x  e.  X  ( F `  x )  =  y ) ) )
167, 13, 153bitr4d 300 . 2  |-  ( ( F : A --> B  /\  X  C_  A )  -> 
( y  e.  ( F " X )  <-> 
y  e.  { y  e.  B  |  E. x  e.  X  ( F `  x )  =  y } ) )
171, 2, 3, 16eqrd 3622 1  |-  ( ( F : A --> B  /\  X  C_  A )  -> 
( F " X
)  =  { y  e.  B  |  E. x  e.  X  ( F `  x )  =  y } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    C_ wss 3574   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  locfinreflem  29907
  Copyright terms: Public domain W3C validator