MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftcnv Structured version   Visualization version   GIF version

Theorem fliftcnv 6561
Description: Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftcnv (𝜑𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftcnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5 ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)
2 flift.3 . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑆)
3 flift.2 . . . . 5 ((𝜑𝑥𝑋) → 𝐴𝑅)
41, 2, 3fliftrel 6558 . . . 4 (𝜑 → ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅))
5 relxp 5227 . . . 4 Rel (𝑆 × 𝑅)
6 relss 5206 . . . 4 (ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅) → (Rel (𝑆 × 𝑅) → Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
74, 5, 6mpisyl 21 . . 3 (𝜑 → Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
8 relcnv 5503 . . 3 Rel 𝐹
97, 8jctil 560 . 2 (𝜑 → (Rel 𝐹 ∧ Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
10 flift.1 . . . . . . 7 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
1110, 3, 2fliftel 6559 . . . . . 6 (𝜑 → (𝑧𝐹𝑦 ↔ ∃𝑥𝑋 (𝑧 = 𝐴𝑦 = 𝐵)))
12 vex 3203 . . . . . . 7 𝑦 ∈ V
13 vex 3203 . . . . . . 7 𝑧 ∈ V
1412, 13brcnv 5305 . . . . . 6 (𝑦𝐹𝑧𝑧𝐹𝑦)
15 ancom 466 . . . . . . 7 ((𝑦 = 𝐵𝑧 = 𝐴) ↔ (𝑧 = 𝐴𝑦 = 𝐵))
1615rexbii 3041 . . . . . 6 (∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴) ↔ ∃𝑥𝑋 (𝑧 = 𝐴𝑦 = 𝐵))
1711, 14, 163bitr4g 303 . . . . 5 (𝜑 → (𝑦𝐹𝑧 ↔ ∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴)))
181, 2, 3fliftel 6559 . . . . 5 (𝜑 → (𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴)))
1917, 18bitr4d 271 . . . 4 (𝜑 → (𝑦𝐹𝑧𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧))
20 df-br 4654 . . . 4 (𝑦𝐹𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐹)
21 df-br 4654 . . . 4 (𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
2219, 20, 213bitr3g 302 . . 3 (𝜑 → (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
2322eqrelrdv2 5219 . 2 (((Rel 𝐹 ∧ Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)) ∧ 𝜑) → 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
249, 23mpancom 703 1 (𝜑𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wrex 2913  wss 3574  cop 4183   class class class wbr 4653  cmpt 4729   × cxp 5112  ccnv 5113  ran crn 5115  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  pi1xfrcnvlem  22856
  Copyright terms: Public domain W3C validator