Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptco1f1o Structured version   Visualization version   GIF version

Theorem fmptco1f1o 29434
Description: The action of composing (to the right) with a bijection is itself a bijection of functions. (Contributed by Thierry Arnoux, 3-Jan-2021.)
Hypotheses
Ref Expression
fmptco1f1o.a 𝐴 = (𝑅𝑚 𝐸)
fmptco1f1o.b 𝐵 = (𝑅𝑚 𝐷)
fmptco1f1o.f 𝐹 = (𝑓𝐴 ↦ (𝑓𝑇))
fmptco1f1o.d (𝜑𝐷𝑉)
fmptco1f1o.e (𝜑𝐸𝑊)
fmptco1f1o.r (𝜑𝑅𝑋)
fmptco1f1o.t (𝜑𝑇:𝐷1-1-onto𝐸)
Assertion
Ref Expression
fmptco1f1o (𝜑𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑇,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐷(𝑓)   𝑅(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝑉(𝑓)   𝑊(𝑓)   𝑋(𝑓)

Proof of Theorem fmptco1f1o
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fmptco1f1o.f . . . 4 𝐹 = (𝑓𝐴 ↦ (𝑓𝑇))
21a1i 11 . . 3 (𝜑𝐹 = (𝑓𝐴 ↦ (𝑓𝑇)))
3 fmptco1f1o.r . . . . . 6 (𝜑𝑅𝑋)
43adantr 481 . . . . 5 ((𝜑𝑓𝐴) → 𝑅𝑋)
5 fmptco1f1o.d . . . . . 6 (𝜑𝐷𝑉)
65adantr 481 . . . . 5 ((𝜑𝑓𝐴) → 𝐷𝑉)
7 simpr 477 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓𝐴)
8 fmptco1f1o.a . . . . . . . 8 𝐴 = (𝑅𝑚 𝐸)
97, 8syl6eleq 2711 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓 ∈ (𝑅𝑚 𝐸))
10 elmapi 7879 . . . . . . 7 (𝑓 ∈ (𝑅𝑚 𝐸) → 𝑓:𝐸𝑅)
119, 10syl 17 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝐸𝑅)
12 fmptco1f1o.t . . . . . . . 8 (𝜑𝑇:𝐷1-1-onto𝐸)
13 f1of 6137 . . . . . . . 8 (𝑇:𝐷1-1-onto𝐸𝑇:𝐷𝐸)
1412, 13syl 17 . . . . . . 7 (𝜑𝑇:𝐷𝐸)
1514adantr 481 . . . . . 6 ((𝜑𝑓𝐴) → 𝑇:𝐷𝐸)
16 fco 6058 . . . . . 6 ((𝑓:𝐸𝑅𝑇:𝐷𝐸) → (𝑓𝑇):𝐷𝑅)
1711, 15, 16syl2anc 693 . . . . 5 ((𝜑𝑓𝐴) → (𝑓𝑇):𝐷𝑅)
18 elmapg 7870 . . . . . 6 ((𝑅𝑋𝐷𝑉) → ((𝑓𝑇) ∈ (𝑅𝑚 𝐷) ↔ (𝑓𝑇):𝐷𝑅))
1918biimpar 502 . . . . 5 (((𝑅𝑋𝐷𝑉) ∧ (𝑓𝑇):𝐷𝑅) → (𝑓𝑇) ∈ (𝑅𝑚 𝐷))
204, 6, 17, 19syl21anc 1325 . . . 4 ((𝜑𝑓𝐴) → (𝑓𝑇) ∈ (𝑅𝑚 𝐷))
21 fmptco1f1o.b . . . 4 𝐵 = (𝑅𝑚 𝐷)
2220, 21syl6eleqr 2712 . . 3 ((𝜑𝑓𝐴) → (𝑓𝑇) ∈ 𝐵)
233adantr 481 . . . . 5 ((𝜑𝑔𝐵) → 𝑅𝑋)
24 fmptco1f1o.e . . . . . 6 (𝜑𝐸𝑊)
2524adantr 481 . . . . 5 ((𝜑𝑔𝐵) → 𝐸𝑊)
26 simpr 477 . . . . . . . 8 ((𝜑𝑔𝐵) → 𝑔𝐵)
2726, 21syl6eleq 2711 . . . . . . 7 ((𝜑𝑔𝐵) → 𝑔 ∈ (𝑅𝑚 𝐷))
28 elmapi 7879 . . . . . . 7 (𝑔 ∈ (𝑅𝑚 𝐷) → 𝑔:𝐷𝑅)
2927, 28syl 17 . . . . . 6 ((𝜑𝑔𝐵) → 𝑔:𝐷𝑅)
30 f1ocnv 6149 . . . . . . . 8 (𝑇:𝐷1-1-onto𝐸𝑇:𝐸1-1-onto𝐷)
31 f1of 6137 . . . . . . . 8 (𝑇:𝐸1-1-onto𝐷𝑇:𝐸𝐷)
3212, 30, 313syl 18 . . . . . . 7 (𝜑𝑇:𝐸𝐷)
3332adantr 481 . . . . . 6 ((𝜑𝑔𝐵) → 𝑇:𝐸𝐷)
34 fco 6058 . . . . . 6 ((𝑔:𝐷𝑅𝑇:𝐸𝐷) → (𝑔𝑇):𝐸𝑅)
3529, 33, 34syl2anc 693 . . . . 5 ((𝜑𝑔𝐵) → (𝑔𝑇):𝐸𝑅)
36 elmapg 7870 . . . . . 6 ((𝑅𝑋𝐸𝑊) → ((𝑔𝑇) ∈ (𝑅𝑚 𝐸) ↔ (𝑔𝑇):𝐸𝑅))
3736biimpar 502 . . . . 5 (((𝑅𝑋𝐸𝑊) ∧ (𝑔𝑇):𝐸𝑅) → (𝑔𝑇) ∈ (𝑅𝑚 𝐸))
3823, 25, 35, 37syl21anc 1325 . . . 4 ((𝜑𝑔𝐵) → (𝑔𝑇) ∈ (𝑅𝑚 𝐸))
3938, 8syl6eleqr 2712 . . 3 ((𝜑𝑔𝐵) → (𝑔𝑇) ∈ 𝐴)
40 coass 5654 . . . . . . 7 ((𝑔𝑇) ∘ 𝑇) = (𝑔 ∘ (𝑇𝑇))
4112ad2antrr 762 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑇:𝐷1-1-onto𝐸)
42 f1ococnv1 6165 . . . . . . . . . 10 (𝑇:𝐷1-1-onto𝐸 → (𝑇𝑇) = ( I ↾ 𝐷))
4342coeq2d 5284 . . . . . . . . 9 (𝑇:𝐷1-1-onto𝐸 → (𝑔 ∘ (𝑇𝑇)) = (𝑔 ∘ ( I ↾ 𝐷)))
4441, 43syl 17 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔 ∘ (𝑇𝑇)) = (𝑔 ∘ ( I ↾ 𝐷)))
4529adantlr 751 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑔:𝐷𝑅)
46 fcoi1 6078 . . . . . . . . 9 (𝑔:𝐷𝑅 → (𝑔 ∘ ( I ↾ 𝐷)) = 𝑔)
4745, 46syl 17 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔 ∘ ( I ↾ 𝐷)) = 𝑔)
4844, 47eqtrd 2656 . . . . . . 7 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔 ∘ (𝑇𝑇)) = 𝑔)
4940, 48syl5req 2669 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑔 = ((𝑔𝑇) ∘ 𝑇))
5049eqeq1d 2624 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔 = (𝑓𝑇) ↔ ((𝑔𝑇) ∘ 𝑇) = (𝑓𝑇)))
51 eqcom 2629 . . . . . 6 (((𝑔𝑇) ∘ 𝑇) = (𝑓𝑇) ↔ (𝑓𝑇) = ((𝑔𝑇) ∘ 𝑇))
5251a1i 11 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (((𝑔𝑇) ∘ 𝑇) = (𝑓𝑇) ↔ (𝑓𝑇) = ((𝑔𝑇) ∘ 𝑇)))
53 f1ofo 6144 . . . . . . 7 (𝑇:𝐷1-1-onto𝐸𝑇:𝐷onto𝐸)
5441, 53syl 17 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑇:𝐷onto𝐸)
55 simplr 792 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑓𝐴)
5655, 8syl6eleq 2711 . . . . . . 7 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑓 ∈ (𝑅𝑚 𝐸))
57 elmapfn 7880 . . . . . . 7 (𝑓 ∈ (𝑅𝑚 𝐸) → 𝑓 Fn 𝐸)
5856, 57syl 17 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑓 Fn 𝐸)
59 elmapfn 7880 . . . . . . . 8 ((𝑔𝑇) ∈ (𝑅𝑚 𝐸) → (𝑔𝑇) Fn 𝐸)
6038, 59syl 17 . . . . . . 7 ((𝜑𝑔𝐵) → (𝑔𝑇) Fn 𝐸)
6160adantlr 751 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔𝑇) Fn 𝐸)
62 cocan2 6547 . . . . . 6 ((𝑇:𝐷onto𝐸𝑓 Fn 𝐸 ∧ (𝑔𝑇) Fn 𝐸) → ((𝑓𝑇) = ((𝑔𝑇) ∘ 𝑇) ↔ 𝑓 = (𝑔𝑇)))
6354, 58, 61, 62syl3anc 1326 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → ((𝑓𝑇) = ((𝑔𝑇) ∘ 𝑇) ↔ 𝑓 = (𝑔𝑇)))
6450, 52, 633bitrrd 295 . . . 4 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑓 = (𝑔𝑇) ↔ 𝑔 = (𝑓𝑇)))
6564anasss 679 . . 3 ((𝜑 ∧ (𝑓𝐴𝑔𝐵)) → (𝑓 = (𝑔𝑇) ↔ 𝑔 = (𝑓𝑇)))
662, 22, 39, 65f1o3d 29431 . 2 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑔𝐵 ↦ (𝑔𝑇))))
6766simpld 475 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cmpt 4729   I cid 5023  ccnv 5113  cres 5116  ccom 5118   Fn wfn 5883  wf 5884  ontowfo 5886  1-1-ontowf1o 5887  (class class class)co 6650  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  reprpmtf1o  30704
  Copyright terms: Public domain W3C validator