MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fninfp Structured version   Visualization version   GIF version

Theorem fninfp 6440
Description: Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fninfp (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem fninfp
StepHypRef Expression
1 inres 5414 . . . . . 6 ( I ∩ (𝐹𝐴)) = (( I ∩ 𝐹) ↾ 𝐴)
2 incom 3805 . . . . . . 7 ( I ∩ 𝐹) = (𝐹 ∩ I )
32reseq1i 5392 . . . . . 6 (( I ∩ 𝐹) ↾ 𝐴) = ((𝐹 ∩ I ) ↾ 𝐴)
41, 3eqtri 2644 . . . . 5 ( I ∩ (𝐹𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴)
5 incom 3805 . . . . 5 ((𝐹𝐴) ∩ I ) = ( I ∩ (𝐹𝐴))
6 inres 5414 . . . . 5 (𝐹 ∩ ( I ↾ 𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴)
74, 5, 63eqtr4i 2654 . . . 4 ((𝐹𝐴) ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴))
8 fnresdm 6000 . . . . 5 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
98ineq1d 3813 . . . 4 (𝐹 Fn 𝐴 → ((𝐹𝐴) ∩ I ) = (𝐹 ∩ I ))
107, 9syl5reqr 2671 . . 3 (𝐹 Fn 𝐴 → (𝐹 ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴)))
1110dmeqd 5326 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = dom (𝐹 ∩ ( I ↾ 𝐴)))
12 fnresi 6008 . . 3 ( I ↾ 𝐴) Fn 𝐴
13 fndmin 6324 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)})
1412, 13mpan2 707 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)})
15 fvresi 6439 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
1615eqeq2d 2632 . . . 4 (𝑥𝐴 → ((𝐹𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) = 𝑥))
1716rabbiia 3185 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥}
1817a1i 11 . 2 (𝐹 Fn 𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
1911, 14, 183eqtrd 2660 1 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {crab 2916  cin 3573   I cid 5023  dom cdm 5114  cres 5116   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  fnelfp  6441
  Copyright terms: Public domain W3C validator