MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmin Structured version   Visualization version   GIF version

Theorem fndmin 6324
Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmin ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴

Proof of Theorem fndmin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffn5 6241 . . . . . . 7 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
21biimpi 206 . . . . . 6 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
3 df-mpt 4730 . . . . . 6 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
42, 3syl6eq 2672 . . . . 5 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
5 dffn5 6241 . . . . . . 7 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
65biimpi 206 . . . . . 6 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
7 df-mpt 4730 . . . . . 6 (𝑥𝐴 ↦ (𝐺𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))}
86, 7syl6eq 2672 . . . . 5 (𝐺 Fn 𝐴𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))})
94, 8ineqan12d 3816 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹𝐺) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))}))
10 inopab 5252 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))}
119, 10syl6eq 2672 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))})
1211dmeqd 5326 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = dom {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))})
13 19.42v 1918 . . . . 5 (∃𝑦(𝑥𝐴 ∧ (𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))))
14 anandi 871 . . . . . 6 ((𝑥𝐴 ∧ (𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))) ↔ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥))))
1514exbii 1774 . . . . 5 (∃𝑦(𝑥𝐴 ∧ (𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))) ↔ ∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥))))
16 fvex 6201 . . . . . . 7 (𝐹𝑥) ∈ V
17 eqeq1 2626 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑦 = (𝐺𝑥) ↔ (𝐹𝑥) = (𝐺𝑥)))
1816, 17ceqsexv 3242 . . . . . 6 (∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥))
1918anbi2i 730 . . . . 5 ((𝑥𝐴 ∧ ∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐺𝑥)))
2013, 15, 193bitr3i 290 . . . 4 (∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥))) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐺𝑥)))
2120abbii 2739 . . 3 {𝑥 ∣ ∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))} = {𝑥 ∣ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐺𝑥))}
22 dmopab 5335 . . 3 dom {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))} = {𝑥 ∣ ∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))}
23 df-rab 2921 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐺𝑥))}
2421, 22, 233eqtr4i 2654 . 2 dom {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))} = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)}
2512, 24syl6eq 2672 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  {crab 2916  cin 3573  {copab 4712  cmpt 4729  dom cdm 5114   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  fneqeql  6325  fninfp  6440  mhmeql  17364  ghmeql  17683  lmhmeql  19055  hauseqlcld  21449  cvmliftmolem1  31263  cvmliftmolem2  31264  hausgraph  37790  mgmhmeql  41803
  Copyright terms: Public domain W3C validator