Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2 Structured version   Visualization version   GIF version

Theorem fnwe2 37623
Description: A well-ordering can be constructed on a partitioned set by patching together well-orderings on each partition using a well-ordering on the partitions themselves. Similar to fnwe 7293 but does not require the within-partition ordering to be globally well. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
fnwe2.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
fnwe2.s ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
fnwe2.f (𝜑 → (𝐹𝐴):𝐴𝐵)
fnwe2.r (𝜑𝑅 We 𝐵)
Assertion
Ref Expression
fnwe2 (𝜑𝑇 We 𝐴)
Distinct variable groups:   𝑦,𝑈,𝑧   𝑥,𝑆,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧)   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧)   𝑈(𝑥)

Proof of Theorem fnwe2
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnwe2.su . . . . . 6 (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
2 fnwe2.t . . . . . 6 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
3 fnwe2.s . . . . . . 7 ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
43adantlr 751 . . . . . 6 (((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) ∧ 𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
5 fnwe2.f . . . . . . 7 (𝜑 → (𝐹𝐴):𝐴𝐵)
65adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → (𝐹𝐴):𝐴𝐵)
7 fnwe2.r . . . . . . 7 (𝜑𝑅 We 𝐵)
87adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → 𝑅 We 𝐵)
9 simprl 794 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → 𝑎𝐴)
10 simprr 796 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → 𝑎 ≠ ∅)
111, 2, 4, 6, 8, 9, 10fnwe2lem2 37621 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → ∃𝑐𝑎𝑑𝑎 ¬ 𝑑𝑇𝑐)
1211ex 450 . . . 4 (𝜑 → ((𝑎𝐴𝑎 ≠ ∅) → ∃𝑐𝑎𝑑𝑎 ¬ 𝑑𝑇𝑐))
1312alrimiv 1855 . . 3 (𝜑 → ∀𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑐𝑎𝑑𝑎 ¬ 𝑑𝑇𝑐))
14 df-fr 5073 . . 3 (𝑇 Fr 𝐴 ↔ ∀𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑐𝑎𝑑𝑎 ¬ 𝑑𝑇𝑐))
1513, 14sylibr 224 . 2 (𝜑𝑇 Fr 𝐴)
163adantlr 751 . . . 4 (((𝜑 ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
175adantr 481 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → (𝐹𝐴):𝐴𝐵)
187adantr 481 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → 𝑅 We 𝐵)
19 simprl 794 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → 𝑎𝐴)
20 simprr 796 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝐴)
211, 2, 16, 17, 18, 19, 20fnwe2lem3 37622 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
2221ralrimivva 2971 . 2 (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
23 dfwe2 6981 . 2 (𝑇 We 𝐴 ↔ (𝑇 Fr 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎)))
2415, 22, 23sylanbrc 698 1 (𝜑𝑇 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3o 1036  wal 1481   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915   class class class wbr 4653  {copab 4712   Fr wfr 5070   We wwe 5072  cres 5116  wf 5884  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  aomclem4  37627
  Copyright terms: Public domain W3C validator