MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2ndres Structured version   Visualization version   GIF version

Theorem fo2ndres 7193
Description: Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
fo2ndres (𝐴 ≠ ∅ → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)

Proof of Theorem fo2ndres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 opelxp 5146 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
3 fvres 6207 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
4 vex 3203 . . . . . . . . . . . . 13 𝑥 ∈ V
5 vex 3203 . . . . . . . . . . . . 13 𝑦 ∈ V
64, 5op2nd 7177 . . . . . . . . . . . 12 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
73, 6syl6req 2673 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑦 = ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩))
8 f2ndres 7191 . . . . . . . . . . . . 13 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
9 ffn 6045 . . . . . . . . . . . . 13 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵))
108, 9ax-mp 5 . . . . . . . . . . . 12 (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵)
11 fnfvelrn 6356 . . . . . . . . . . . 12 (((2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1210, 11mpan 706 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
137, 12eqeltrd 2701 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
142, 13sylbir 225 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → 𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1514ex 450 . . . . . . . 8 (𝑥𝐴 → (𝑦𝐵𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1615exlimiv 1858 . . . . . . 7 (∃𝑥 𝑥𝐴 → (𝑦𝐵𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
171, 16sylbi 207 . . . . . 6 (𝐴 ≠ ∅ → (𝑦𝐵𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1817ssrdv 3609 . . . . 5 (𝐴 ≠ ∅ → 𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵)))
19 frn 6053 . . . . . 6 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵)
208, 19ax-mp 5 . . . . 5 ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵
2118, 20jctil 560 . . . 4 (𝐴 ≠ ∅ → (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
22 eqss 3618 . . . 4 (ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
2321, 22sylibr 224 . . 3 (𝐴 ≠ ∅ → ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵)
2423, 8jctil 560 . 2 (𝐴 ≠ ∅ → ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
25 dffo2 6119 . 2 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
2624, 25sylibr 224 1 (𝐴 ≠ ∅ → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wss 3574  c0 3915  cop 4183   × cxp 5112  ran crn 5115  cres 5116   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  2nd c2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-2nd 7169
This theorem is referenced by:  2ndconst  7266  txcmpb  21447
  Copyright terms: Public domain W3C validator