MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foov Structured version   Visualization version   GIF version

Theorem foov 6808
Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
foov (𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑧,𝐶   𝑥,𝐹,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem foov
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dffo3 6374 . 2 (𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤)))
2 fveq2 6191 . . . . . . 7 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 6653 . . . . . . 7 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3syl6eqr 2674 . . . . . 6 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝑥𝐹𝑦))
54eqeq2d 2632 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (𝐹𝑤) ↔ 𝑧 = (𝑥𝐹𝑦)))
65rexxp 5264 . . . 4 (∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦))
76ralbii 2980 . . 3 (∀𝑧𝐶𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤) ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦))
87anbi2i 730 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤)) ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)))
91, 8bitri 264 1 (𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wral 2912  wrex 2913  cop 4183   × cxp 5112  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-ov 6653
This theorem is referenced by:  iunfictbso  8937  xpsff1o  16228  mndpfo  17314  gafo  17729  isgrpo  27351  isgrpoi  27352  opidonOLD  33651  rngmgmbs4  33730  isgrpda  33754
  Copyright terms: Public domain W3C validator