MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsff1o Structured version   Visualization version   GIF version

Theorem xpsff1o 16228
Description: The function appearing in xpsval 16232 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2𝑜 = {∅, 1𝑜}. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵({𝑥} +𝑐 {𝑦}))
Assertion
Ref Expression
xpsff1o 𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝐵,𝑘,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑘)

Proof of Theorem xpsff1o
Dummy variables 𝑎 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsfrnel2 16225 . . . . . 6 (({𝑥} +𝑐 {𝑦}) ∈ X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑥𝐴𝑦𝐵))
21biimpri 218 . . . . 5 ((𝑥𝐴𝑦𝐵) → ({𝑥} +𝑐 {𝑦}) ∈ X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵))
32rgen2 2975 . . . 4 𝑥𝐴𝑦𝐵 ({𝑥} +𝑐 {𝑦}) ∈ X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)
4 xpsff1o.f . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵({𝑥} +𝑐 {𝑦}))
54fmpt2 7237 . . . 4 (∀𝑥𝐴𝑦𝐵 ({𝑥} +𝑐 {𝑦}) ∈ X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵))
63, 5mpbi 220 . . 3 𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)
7 1st2nd2 7205 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
87fveq2d 6195 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
9 df-ov 6653 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
10 xp1st 7198 . . . . . . . . 9 (𝑧 ∈ (𝐴 × 𝐵) → (1st𝑧) ∈ 𝐴)
11 xp2nd 7199 . . . . . . . . 9 (𝑧 ∈ (𝐴 × 𝐵) → (2nd𝑧) ∈ 𝐵)
124xpsfval 16227 . . . . . . . . 9 (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → ((1st𝑧)𝐹(2nd𝑧)) = ({(1st𝑧)} +𝑐 {(2nd𝑧)}))
1310, 11, 12syl2anc 693 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → ((1st𝑧)𝐹(2nd𝑧)) = ({(1st𝑧)} +𝑐 {(2nd𝑧)}))
149, 13syl5eqr 2670 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩) = ({(1st𝑧)} +𝑐 {(2nd𝑧)}))
158, 14eqtrd 2656 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹𝑧) = ({(1st𝑧)} +𝑐 {(2nd𝑧)}))
16 1st2nd2 7205 . . . . . . . 8 (𝑤 ∈ (𝐴 × 𝐵) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
1716fveq2d 6195 . . . . . . 7 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹𝑤) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩))
18 df-ov 6653 . . . . . . . 8 ((1st𝑤)𝐹(2nd𝑤)) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩)
19 xp1st 7198 . . . . . . . . 9 (𝑤 ∈ (𝐴 × 𝐵) → (1st𝑤) ∈ 𝐴)
20 xp2nd 7199 . . . . . . . . 9 (𝑤 ∈ (𝐴 × 𝐵) → (2nd𝑤) ∈ 𝐵)
214xpsfval 16227 . . . . . . . . 9 (((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐵) → ((1st𝑤)𝐹(2nd𝑤)) = ({(1st𝑤)} +𝑐 {(2nd𝑤)}))
2219, 20, 21syl2anc 693 . . . . . . . 8 (𝑤 ∈ (𝐴 × 𝐵) → ((1st𝑤)𝐹(2nd𝑤)) = ({(1st𝑤)} +𝑐 {(2nd𝑤)}))
2318, 22syl5eqr 2670 . . . . . . 7 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩) = ({(1st𝑤)} +𝑐 {(2nd𝑤)}))
2417, 23eqtrd 2656 . . . . . 6 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹𝑤) = ({(1st𝑤)} +𝑐 {(2nd𝑤)}))
2515, 24eqeqan12d 2638 . . . . 5 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ({(1st𝑧)} +𝑐 {(2nd𝑧)}) = ({(1st𝑤)} +𝑐 {(2nd𝑤)})))
26 fveq1 6190 . . . . . . . 8 (({(1st𝑧)} +𝑐 {(2nd𝑧)}) = ({(1st𝑤)} +𝑐 {(2nd𝑤)}) → (({(1st𝑧)} +𝑐 {(2nd𝑧)})‘∅) = (({(1st𝑤)} +𝑐 {(2nd𝑤)})‘∅))
27 fvex 6201 . . . . . . . . 9 (1st𝑧) ∈ V
28 xpsc0 16220 . . . . . . . . 9 ((1st𝑧) ∈ V → (({(1st𝑧)} +𝑐 {(2nd𝑧)})‘∅) = (1st𝑧))
2927, 28ax-mp 5 . . . . . . . 8 (({(1st𝑧)} +𝑐 {(2nd𝑧)})‘∅) = (1st𝑧)
30 fvex 6201 . . . . . . . . 9 (1st𝑤) ∈ V
31 xpsc0 16220 . . . . . . . . 9 ((1st𝑤) ∈ V → (({(1st𝑤)} +𝑐 {(2nd𝑤)})‘∅) = (1st𝑤))
3230, 31ax-mp 5 . . . . . . . 8 (({(1st𝑤)} +𝑐 {(2nd𝑤)})‘∅) = (1st𝑤)
3326, 29, 323eqtr3g 2679 . . . . . . 7 (({(1st𝑧)} +𝑐 {(2nd𝑧)}) = ({(1st𝑤)} +𝑐 {(2nd𝑤)}) → (1st𝑧) = (1st𝑤))
34 fveq1 6190 . . . . . . . 8 (({(1st𝑧)} +𝑐 {(2nd𝑧)}) = ({(1st𝑤)} +𝑐 {(2nd𝑤)}) → (({(1st𝑧)} +𝑐 {(2nd𝑧)})‘1𝑜) = (({(1st𝑤)} +𝑐 {(2nd𝑤)})‘1𝑜))
35 fvex 6201 . . . . . . . . 9 (2nd𝑧) ∈ V
36 xpsc1 16221 . . . . . . . . 9 ((2nd𝑧) ∈ V → (({(1st𝑧)} +𝑐 {(2nd𝑧)})‘1𝑜) = (2nd𝑧))
3735, 36ax-mp 5 . . . . . . . 8 (({(1st𝑧)} +𝑐 {(2nd𝑧)})‘1𝑜) = (2nd𝑧)
38 fvex 6201 . . . . . . . . 9 (2nd𝑤) ∈ V
39 xpsc1 16221 . . . . . . . . 9 ((2nd𝑤) ∈ V → (({(1st𝑤)} +𝑐 {(2nd𝑤)})‘1𝑜) = (2nd𝑤))
4038, 39ax-mp 5 . . . . . . . 8 (({(1st𝑤)} +𝑐 {(2nd𝑤)})‘1𝑜) = (2nd𝑤)
4134, 37, 403eqtr3g 2679 . . . . . . 7 (({(1st𝑧)} +𝑐 {(2nd𝑧)}) = ({(1st𝑤)} +𝑐 {(2nd𝑤)}) → (2nd𝑧) = (2nd𝑤))
4233, 41opeq12d 4410 . . . . . 6 (({(1st𝑧)} +𝑐 {(2nd𝑧)}) = ({(1st𝑤)} +𝑐 {(2nd𝑤)}) → ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩)
437, 16eqeqan12d 2638 . . . . . 6 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
4442, 43syl5ibr 236 . . . . 5 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → (({(1st𝑧)} +𝑐 {(2nd𝑧)}) = ({(1st𝑤)} +𝑐 {(2nd𝑤)}) → 𝑧 = 𝑤))
4525, 44sylbid 230 . . . 4 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
4645rgen2 2975 . . 3 𝑧 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
47 dff13 6512 . . 3 (𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
486, 46, 47mpbir2an 955 . 2 𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)
49 xpsfrnel 16223 . . . . . 6 (𝑧X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑧 Fn 2𝑜 ∧ (𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1𝑜) ∈ 𝐵))
5049simp2bi 1077 . . . . 5 (𝑧X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → (𝑧‘∅) ∈ 𝐴)
5149simp3bi 1078 . . . . 5 (𝑧X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → (𝑧‘1𝑜) ∈ 𝐵)
524xpsfval 16227 . . . . . . 7 (((𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1𝑜) ∈ 𝐵) → ((𝑧‘∅)𝐹(𝑧‘1𝑜)) = ({(𝑧‘∅)} +𝑐 {(𝑧‘1𝑜)}))
5350, 51, 52syl2anc 693 . . . . . 6 (𝑧X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → ((𝑧‘∅)𝐹(𝑧‘1𝑜)) = ({(𝑧‘∅)} +𝑐 {(𝑧‘1𝑜)}))
54 ixpfn 7914 . . . . . . 7 (𝑧X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → 𝑧 Fn 2𝑜)
55 xpsfeq 16224 . . . . . . 7 (𝑧 Fn 2𝑜({(𝑧‘∅)} +𝑐 {(𝑧‘1𝑜)}) = 𝑧)
5654, 55syl 17 . . . . . 6 (𝑧X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → ({(𝑧‘∅)} +𝑐 {(𝑧‘1𝑜)}) = 𝑧)
5753, 56eqtr2d 2657 . . . . 5 (𝑧X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → 𝑧 = ((𝑧‘∅)𝐹(𝑧‘1𝑜)))
58 rspceov 6692 . . . . 5 (((𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1𝑜) ∈ 𝐵𝑧 = ((𝑧‘∅)𝐹(𝑧‘1𝑜))) → ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏))
5950, 51, 57, 58syl3anc 1326 . . . 4 (𝑧X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏))
6059rgen 2922 . . 3 𝑧X 𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏)
61 foov 6808 . . 3 (𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) ∧ ∀𝑧X 𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏)))
626, 60, 61mpbir2an 955 . 2 𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)
63 df-f1o 5895 . 2 (𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) ∧ 𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)))
6448, 62, 63mpbir2an 955 1 𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  c0 3915  ifcif 4086  {csn 4177  cop 4183   × cxp 5112  ccnv 5113   Fn wfn 5883  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  1𝑜c1o 7553  2𝑜c2o 7554  Xcixp 7908   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-cda 8990
This theorem is referenced by:  xpsfrn  16229  xpsff1o2  16231
  Copyright terms: Public domain W3C validator