MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfictbso Structured version   Visualization version   GIF version

Theorem iunfictbso 8937
Description: Countability of a countable union of finite sets with a strict (not globally well) order fulfilling the choice role. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
iunfictbso ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω)

Proof of Theorem iunfictbso
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 8540 . . . . 5 ω ∈ V
210dom 8090 . . . 4 ∅ ≼ ω
3 breq1 4656 . . . 4 ( 𝐴 = ∅ → ( 𝐴 ≼ ω ↔ ∅ ≼ ω))
42, 3mpbiri 248 . . 3 ( 𝐴 = ∅ → 𝐴 ≼ ω)
54a1d 25 . 2 ( 𝐴 = ∅ → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
6 n0 3931 . . 3 ( 𝐴 ≠ ∅ ↔ ∃𝑎 𝑎 𝐴)
7 ne0i 3921 . . . . . . . . . 10 (𝑎 𝐴 𝐴 ≠ ∅)
8 unieq 4444 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
9 uni0 4465 . . . . . . . . . . . 12 ∅ = ∅
108, 9syl6eq 2672 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 = ∅)
1110necon3i 2826 . . . . . . . . . 10 ( 𝐴 ≠ ∅ → 𝐴 ≠ ∅)
127, 11syl 17 . . . . . . . . 9 (𝑎 𝐴𝐴 ≠ ∅)
1312adantl 482 . . . . . . . 8 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → 𝐴 ≠ ∅)
14 simpl1 1064 . . . . . . . . 9 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → 𝐴 ≼ ω)
15 reldom 7961 . . . . . . . . . 10 Rel ≼
1615brrelexi 5158 . . . . . . . . 9 (𝐴 ≼ ω → 𝐴 ∈ V)
17 0sdomg 8089 . . . . . . . . 9 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1814, 16, 173syl 18 . . . . . . . 8 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
1913, 18mpbird 247 . . . . . . 7 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → ∅ ≺ 𝐴)
20 fodomr 8111 . . . . . . 7 ((∅ ≺ 𝐴𝐴 ≼ ω) → ∃𝑏 𝑏:ω–onto𝐴)
2119, 14, 20syl2anc 693 . . . . . 6 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → ∃𝑏 𝑏:ω–onto𝐴)
22 omelon 8543 . . . . . . . . . . . 12 ω ∈ On
23 onenon 8775 . . . . . . . . . . . 12 (ω ∈ On → ω ∈ dom card)
2422, 23ax-mp 5 . . . . . . . . . . 11 ω ∈ dom card
25 xpnum 8777 . . . . . . . . . . 11 ((ω ∈ dom card ∧ ω ∈ dom card) → (ω × ω) ∈ dom card)
2624, 24, 25mp2an 708 . . . . . . . . . 10 (ω × ω) ∈ dom card
27 simplrr 801 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝑏:ω–onto𝐴)
28 fof 6115 . . . . . . . . . . . . . . . . . . 19 (𝑏:ω–onto𝐴𝑏:ω⟶𝐴)
2927, 28syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝑏:ω⟶𝐴)
30 simprl 794 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝑓 ∈ ω)
3129, 30ffvelrnd 6360 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑏𝑓) ∈ 𝐴)
3231adantr 481 . . . . . . . . . . . . . . . 16 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → (𝑏𝑓) ∈ 𝐴)
33 elssuni 4467 . . . . . . . . . . . . . . . 16 ((𝑏𝑓) ∈ 𝐴 → (𝑏𝑓) ⊆ 𝐴)
3432, 33syl 17 . . . . . . . . . . . . . . 15 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → (𝑏𝑓) ⊆ 𝐴)
3531, 33syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑏𝑓) ⊆ 𝐴)
36 simpll3 1102 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝐵 Or 𝐴)
37 soss 5053 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏𝑓) ⊆ 𝐴 → (𝐵 Or 𝐴𝐵 Or (𝑏𝑓)))
3835, 36, 37sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝐵 Or (𝑏𝑓))
39 simpll2 1101 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝐴 ⊆ Fin)
4039, 31sseldd 3604 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑏𝑓) ∈ Fin)
41 finnisoeu 8936 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 Or (𝑏𝑓) ∧ (𝑏𝑓) ∈ Fin) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
4238, 40, 41syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
43 iotacl 5874 . . . . . . . . . . . . . . . . . . 19 (∃! Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))})
4442, 43syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))})
45 iotaex 5868 . . . . . . . . . . . . . . . . . . 19 (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ V
46 isoeq1 6567 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) → (𝑎 Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))))
47 isoeq1 6567 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑎 → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ 𝑎 Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))))
4847cbvabv 2747 . . . . . . . . . . . . . . . . . . 19 { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))} = {𝑎𝑎 Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))}
4945, 46, 48elab2 3354 . . . . . . . . . . . . . . . . . 18 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))} ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
5044, 49sylib 208 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
51 isof1o 6573 . . . . . . . . . . . . . . . . 17 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))–1-1-onto→(𝑏𝑓))
52 f1of 6137 . . . . . . . . . . . . . . . . 17 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))–1-1-onto→(𝑏𝑓) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))⟶(𝑏𝑓))
5350, 51, 523syl 18 . . . . . . . . . . . . . . . 16 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))⟶(𝑏𝑓))
5453ffvelrnda 6359 . . . . . . . . . . . . . . 15 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔) ∈ (𝑏𝑓))
5534, 54sseldd 3604 . . . . . . . . . . . . . 14 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔) ∈ 𝐴)
56 simprl 794 . . . . . . . . . . . . . . 15 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → 𝑎 𝐴)
5756ad2antrr 762 . . . . . . . . . . . . . 14 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ ¬ 𝑔 ∈ (card‘(𝑏𝑓))) → 𝑎 𝐴)
5855, 57ifclda 4120 . . . . . . . . . . . . 13 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) ∈ 𝐴)
5958ralrimivva 2971 . . . . . . . . . . . 12 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → ∀𝑓 ∈ ω ∀𝑔 ∈ ω if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) ∈ 𝐴)
60 eqid 2622 . . . . . . . . . . . . 13 (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)) = (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))
6160fmpt2 7237 . . . . . . . . . . . 12 (∀𝑓 ∈ ω ∀𝑔 ∈ ω if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) ∈ 𝐴 ↔ (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)⟶ 𝐴)
6259, 61sylib 208 . . . . . . . . . . 11 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)⟶ 𝐴)
63 eluni 4439 . . . . . . . . . . . . 13 (𝑐 𝐴 ↔ ∃𝑖(𝑐𝑖𝑖𝐴))
64 simplrr 801 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → 𝑏:ω–onto𝐴)
65 simprr 796 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → 𝑖𝐴)
66 foelrn 6378 . . . . . . . . . . . . . . . . 17 ((𝑏:ω–onto𝐴𝑖𝐴) → ∃𝑗 ∈ ω 𝑖 = (𝑏𝑗))
6764, 65, 66syl2anc 693 . . . . . . . . . . . . . . . 16 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → ∃𝑗 ∈ ω 𝑖 = (𝑏𝑗))
68 simprrl 804 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑗 ∈ ω)
69 ordom 7074 . . . . . . . . . . . . . . . . . . . . . 22 Ord ω
70 simpll2 1101 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝐴 ⊆ Fin)
71 simplrr 801 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑏:ω–onto𝐴)
7271, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑏:ω⟶𝐴)
7372, 68ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑏𝑗) ∈ 𝐴)
7470, 73sseldd 3604 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑏𝑗) ∈ Fin)
75 ficardom 8787 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑗) ∈ Fin → (card‘(𝑏𝑗)) ∈ ω)
7674, 75syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (card‘(𝑏𝑗)) ∈ ω)
77 ordelss 5739 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord ω ∧ (card‘(𝑏𝑗)) ∈ ω) → (card‘(𝑏𝑗)) ⊆ ω)
7869, 76, 77sylancr 695 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (card‘(𝑏𝑗)) ⊆ ω)
79 elssuni 4467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏𝑗) ∈ 𝐴 → (𝑏𝑗) ⊆ 𝐴)
8073, 79syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑏𝑗) ⊆ 𝐴)
81 simpll3 1102 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝐵 Or 𝐴)
82 soss 5053 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑗) ⊆ 𝐴 → (𝐵 Or 𝐴𝐵 Or (𝑏𝑗)))
8380, 81, 82sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝐵 Or (𝑏𝑗))
84 finnisoeu 8936 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 Or (𝑏𝑗) ∧ (𝑏𝑗) ∈ Fin) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
8583, 74, 84syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
86 iotacl 5874 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃! Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))})
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))})
88 iotaex 5868 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ V
89 isoeq1 6567 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) → (𝑎 Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
90 isoeq1 6567 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑎 → ( Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) ↔ 𝑎 Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
9190cbvabv 2747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))} = {𝑎𝑎 Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))}
9288, 89, 91elab2 3354 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))} ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
9387, 92sylib 208 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
94 isof1o 6573 . . . . . . . . . . . . . . . . . . . . . . . 24 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗))
9593, 94syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗))
96 f1ocnv 6149 . . . . . . . . . . . . . . . . . . . . . . 23 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)–1-1-onto→(card‘(𝑏𝑗)))
97 f1of 6137 . . . . . . . . . . . . . . . . . . . . . . 23 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)–1-1-onto→(card‘(𝑏𝑗)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)⟶(card‘(𝑏𝑗)))
9895, 96, 973syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)⟶(card‘(𝑏𝑗)))
99 simprll 802 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑐𝑖)
100 simprrr 805 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑖 = (𝑏𝑗))
10199, 100eleqtrd 2703 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑐 ∈ (𝑏𝑗))
10298, 101ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)))
10378, 102sseldd 3604 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ ω)
104 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑗 → (𝑏𝑓) = (𝑏𝑗))
105104fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑗 → (card‘(𝑏𝑓)) = (card‘(𝑏𝑗)))
106105eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑗 → (𝑔 ∈ (card‘(𝑏𝑓)) ↔ 𝑔 ∈ (card‘(𝑏𝑗))))
107 isoeq4 6570 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((card‘(𝑏𝑓)) = (card‘(𝑏𝑗)) → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓))))
108105, 107syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = 𝑗 → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓))))
109 isoeq5 6571 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑓) = (𝑏𝑗) → ( Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
110104, 109syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = 𝑗 → ( Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
111108, 110bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑗 → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
112111iotabidv 5872 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑗 → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) = (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
113112fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑗 → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔) = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔))
114106, 113ifbieq1d 4109 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑗 → if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) = if(𝑔 ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔), 𝑎))
115 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) → (𝑔 ∈ (card‘(𝑏𝑗)) ↔ ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗))))
116 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔) = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)))
117115, 116ifbieq1d 4109 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) → if(𝑔 ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔), 𝑎) = if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎))
118 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . 24 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) ∈ V
119 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑎 ∈ V
120118, 119ifex 4156 . . . . . . . . . . . . . . . . . . . . . . 23 if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎) ∈ V
121114, 117, 60, 120ovmpt2 6796 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ω ∧ ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ ω) → (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎))
12268, 103, 121syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎))
123102iftrued 4094 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎) = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)))
124 f1ocnvfv2 6533 . . . . . . . . . . . . . . . . . . . . . 22 (((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗) ∧ 𝑐 ∈ (𝑏𝑗)) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = 𝑐)
12595, 101, 124syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = 𝑐)
126122, 123, 1253eqtrrd 2661 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑐 = (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)))
127 rspceov 6692 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ω ∧ ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ ω ∧ 𝑐 = (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐))) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
12868, 103, 126, 127syl3anc 1326 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
129128expr 643 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → ((𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
130129expd 452 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → (𝑗 ∈ ω → (𝑖 = (𝑏𝑗) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))))
131130rexlimdv 3030 . . . . . . . . . . . . . . . 16 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → (∃𝑗 ∈ ω 𝑖 = (𝑏𝑗) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
13267, 131mpd 15 . . . . . . . . . . . . . . 15 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
133132ex 450 . . . . . . . . . . . . . 14 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → ((𝑐𝑖𝑖𝐴) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
134133exlimdv 1861 . . . . . . . . . . . . 13 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (∃𝑖(𝑐𝑖𝑖𝐴) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
13563, 134syl5bi 232 . . . . . . . . . . . 12 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (𝑐 𝐴 → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
136135ralrimiv 2965 . . . . . . . . . . 11 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → ∀𝑐 𝐴𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
137 foov 6808 . . . . . . . . . . 11 ((𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)–onto 𝐴 ↔ ((𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)⟶ 𝐴 ∧ ∀𝑐 𝐴𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
13862, 136, 137sylanbrc 698 . . . . . . . . . 10 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)–onto 𝐴)
139 fodomnum 8880 . . . . . . . . . 10 ((ω × ω) ∈ dom card → ((𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)–onto 𝐴 𝐴 ≼ (ω × ω)))
14026, 138, 139mpsyl 68 . . . . . . . . 9 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → 𝐴 ≼ (ω × ω))
141 xpomen 8838 . . . . . . . . 9 (ω × ω) ≈ ω
142 domentr 8015 . . . . . . . . 9 (( 𝐴 ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → 𝐴 ≼ ω)
143140, 141, 142sylancl 694 . . . . . . . 8 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → 𝐴 ≼ ω)
144143expr 643 . . . . . . 7 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → (𝑏:ω–onto𝐴 𝐴 ≼ ω))
145144exlimdv 1861 . . . . . 6 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → (∃𝑏 𝑏:ω–onto𝐴 𝐴 ≼ ω))
14621, 145mpd 15 . . . . 5 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → 𝐴 ≼ ω)
147146expcom 451 . . . 4 (𝑎 𝐴 → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
148147exlimiv 1858 . . 3 (∃𝑎 𝑎 𝐴 → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
1496, 148sylbi 207 . 2 ( 𝐴 ≠ ∅ → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
1505, 149pm2.61ine 2877 1 ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  {cab 2608  wne 2794  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915  ifcif 4086   cuni 4436   class class class wbr 4653   E cep 5028   Or wor 5034   × cxp 5112  ccnv 5113  dom cdm 5114  Ord word 5722  Oncon0 5723  cio 5849  wf 5884  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889  (class class class)co 6650  cmpt2 6652  ωcom 7065  cen 7952  cdom 7953  csdm 7954  Fincfn 7955  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-acn 8768
This theorem is referenced by:  aannenlem3  24085
  Copyright terms: Public domain W3C validator