MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwecbv Structured version   Visualization version   GIF version

Theorem fpwwecbv 9466
Description: Lemma for fpwwe 9468. (Contributed by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
fpwwe.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
Assertion
Ref Expression
fpwwecbv 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))}
Distinct variable groups:   𝑟,𝑎,𝑠,𝑥,𝐴   𝑦,𝑎,𝑧,𝐹,𝑟,𝑠,𝑥
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧,𝑠,𝑟,𝑎)

Proof of Theorem fpwwecbv
StepHypRef Expression
1 fpwwe.1 . 2 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
2 simpl 473 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑥 = 𝑎)
32sseq1d 3632 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑥𝐴𝑎𝐴))
4 simpr 477 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑟 = 𝑠)
52sqxpeqd 5141 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑥 × 𝑥) = (𝑎 × 𝑎))
64, 5sseq12d 3634 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑠 ⊆ (𝑎 × 𝑎)))
73, 6anbi12d 747 . . . 4 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ↔ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎))))
8 weeq2 5103 . . . . . 6 (𝑥 = 𝑎 → (𝑟 We 𝑥𝑟 We 𝑎))
9 weeq1 5102 . . . . . 6 (𝑟 = 𝑠 → (𝑟 We 𝑎𝑠 We 𝑎))
108, 9sylan9bb 736 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 We 𝑥𝑠 We 𝑎))
11 sneq 4187 . . . . . . . . . 10 (𝑦 = 𝑧 → {𝑦} = {𝑧})
1211imaeq2d 5466 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑟 “ {𝑦}) = (𝑟 “ {𝑧}))
1312fveq2d 6195 . . . . . . . 8 (𝑦 = 𝑧 → (𝐹‘(𝑟 “ {𝑦})) = (𝐹‘(𝑟 “ {𝑧})))
14 id 22 . . . . . . . 8 (𝑦 = 𝑧𝑦 = 𝑧)
1513, 14eqeq12d 2637 . . . . . . 7 (𝑦 = 𝑧 → ((𝐹‘(𝑟 “ {𝑦})) = 𝑦 ↔ (𝐹‘(𝑟 “ {𝑧})) = 𝑧))
1615cbvralv 3171 . . . . . 6 (∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦 ↔ ∀𝑧𝑥 (𝐹‘(𝑟 “ {𝑧})) = 𝑧)
174cnveqd 5298 . . . . . . . . . 10 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑟 = 𝑠)
1817imaeq1d 5465 . . . . . . . . 9 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 “ {𝑧}) = (𝑠 “ {𝑧}))
1918fveq2d 6195 . . . . . . . 8 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝐹‘(𝑟 “ {𝑧})) = (𝐹‘(𝑠 “ {𝑧})))
2019eqeq1d 2624 . . . . . . 7 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝐹‘(𝑟 “ {𝑧})) = 𝑧 ↔ (𝐹‘(𝑠 “ {𝑧})) = 𝑧))
212, 20raleqbidv 3152 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → (∀𝑧𝑥 (𝐹‘(𝑟 “ {𝑧})) = 𝑧 ↔ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))
2216, 21syl5bb 272 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦 ↔ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))
2310, 22anbi12d 747 . . . 4 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦) ↔ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧)))
247, 23anbi12d 747 . . 3 ((𝑥 = 𝑎𝑟 = 𝑠) → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦)) ↔ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))))
2524cbvopabv 4722 . 2 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))}
261, 25eqtri 2644 1 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wral 2912  wss 3574  {csn 4177  {copab 4712   We wwe 5072   × cxp 5112  ccnv 5113  cima 5117  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896
This theorem is referenced by:  canthnum  9471  canthp1  9476
  Copyright terms: Public domain W3C validator