| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fpwwecbv | Structured version Visualization version Unicode version | ||
| Description: Lemma for fpwwe 9468. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| fpwwe.1 |
|
| Ref | Expression |
|---|---|
| fpwwecbv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe.1 |
. 2
| |
| 2 | simpl 473 |
. . . . . 6
| |
| 3 | 2 | sseq1d 3632 |
. . . . 5
|
| 4 | simpr 477 |
. . . . . 6
| |
| 5 | 2 | sqxpeqd 5141 |
. . . . . 6
|
| 6 | 4, 5 | sseq12d 3634 |
. . . . 5
|
| 7 | 3, 6 | anbi12d 747 |
. . . 4
|
| 8 | weeq2 5103 |
. . . . . 6
| |
| 9 | weeq1 5102 |
. . . . . 6
| |
| 10 | 8, 9 | sylan9bb 736 |
. . . . 5
|
| 11 | sneq 4187 |
. . . . . . . . . 10
| |
| 12 | 11 | imaeq2d 5466 |
. . . . . . . . 9
|
| 13 | 12 | fveq2d 6195 |
. . . . . . . 8
|
| 14 | id 22 |
. . . . . . . 8
| |
| 15 | 13, 14 | eqeq12d 2637 |
. . . . . . 7
|
| 16 | 15 | cbvralv 3171 |
. . . . . 6
|
| 17 | 4 | cnveqd 5298 |
. . . . . . . . . 10
|
| 18 | 17 | imaeq1d 5465 |
. . . . . . . . 9
|
| 19 | 18 | fveq2d 6195 |
. . . . . . . 8
|
| 20 | 19 | eqeq1d 2624 |
. . . . . . 7
|
| 21 | 2, 20 | raleqbidv 3152 |
. . . . . 6
|
| 22 | 16, 21 | syl5bb 272 |
. . . . 5
|
| 23 | 10, 22 | anbi12d 747 |
. . . 4
|
| 24 | 7, 23 | anbi12d 747 |
. . 3
|
| 25 | 24 | cbvopabv 4722 |
. 2
|
| 26 | 1, 25 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: canthnum 9471 canthp1 9476 |
| Copyright terms: Public domain | W3C validator |