Proof of Theorem fpwwelem
| Step | Hyp | Ref
| Expression |
| 1 | | fpwwe.1 |
. . . . 5
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} |
| 2 | 1 | relopabi 5245 |
. . . 4
⊢ Rel 𝑊 |
| 3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → Rel 𝑊) |
| 4 | | brrelex12 5155 |
. . 3
⊢ ((Rel
𝑊 ∧ 𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V)) |
| 5 | 3, 4 | sylan 488 |
. 2
⊢ ((𝜑 ∧ 𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V)) |
| 6 | | fpwwe.2 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
| 7 | 6 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦))) → 𝐴 ∈ V) |
| 8 | | simprll 802 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦))) → 𝑋 ⊆ 𝐴) |
| 9 | 7, 8 | ssexd 4805 |
. . 3
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦))) → 𝑋 ∈ V) |
| 10 | | xpexg 6960 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑋 × 𝑋) ∈ V) |
| 11 | 9, 9, 10 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦))) → (𝑋 × 𝑋) ∈ V) |
| 12 | | simprlr 803 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦))) → 𝑅 ⊆ (𝑋 × 𝑋)) |
| 13 | 11, 12 | ssexd 4805 |
. . 3
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦))) → 𝑅 ∈ V) |
| 14 | 9, 13 | jca 554 |
. 2
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦))) → (𝑋 ∈ V ∧ 𝑅 ∈ V)) |
| 15 | | simpl 473 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → 𝑥 = 𝑋) |
| 16 | 15 | sseq1d 3632 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) |
| 17 | | simpr 477 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
| 18 | 15 | sqxpeqd 5141 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑥 × 𝑥) = (𝑋 × 𝑋)) |
| 19 | 17, 18 | sseq12d 3634 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑅 ⊆ (𝑋 × 𝑋))) |
| 20 | 16, 19 | anbi12d 747 |
. . . 4
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ↔ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)))) |
| 21 | | weeq2 5103 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑟 We 𝑥 ↔ 𝑟 We 𝑋)) |
| 22 | | weeq1 5102 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (𝑟 We 𝑋 ↔ 𝑅 We 𝑋)) |
| 23 | 21, 22 | sylan9bb 736 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑟 We 𝑥 ↔ 𝑅 We 𝑋)) |
| 24 | 17 | cnveqd 5298 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ◡𝑟 = ◡𝑅) |
| 25 | 24 | imaeq1d 5465 |
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (◡𝑟 “ {𝑦}) = (◡𝑅 “ {𝑦})) |
| 26 | 25 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝐹‘(◡𝑟 “ {𝑦})) = (𝐹‘(◡𝑅 “ {𝑦}))) |
| 27 | 26 | eqeq1d 2624 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝐹‘(◡𝑟 “ {𝑦})) = 𝑦 ↔ (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦)) |
| 28 | 15, 27 | raleqbidv 3152 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦 ↔ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦)) |
| 29 | 23, 28 | anbi12d 747 |
. . . 4
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦) ↔ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦))) |
| 30 | 20, 29 | anbi12d 747 |
. . 3
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦)) ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦)))) |
| 31 | 30, 1 | brabga 4989 |
. 2
⊢ ((𝑋 ∈ V ∧ 𝑅 ∈ V) → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦)))) |
| 32 | 5, 14, 31 | pm5.21nd 941 |
1
⊢ (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦)))) |