Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem5d Structured version   Visualization version   GIF version

Theorem frrlem5d 31787
Description: Lemma for founded recursion. The domain of the union of a subset of 𝐵 is a subset of 𝐴. (Contributed by Paul Chapman, 29-Apr-2012.)
Hypotheses
Ref Expression
frrlem5.1 𝑅 Fr 𝐴
frrlem5.2 𝑅 Se 𝐴
frrlem5.3 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
Assertion
Ref Expression
frrlem5d (𝐶𝐵 → dom 𝐶𝐴)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑦,𝑓)   𝐶(𝑥,𝑦,𝑓)

Proof of Theorem frrlem5d
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dmuni 5334 . 2 dom 𝐶 = 𝑔𝐶 dom 𝑔
2 ssel 3597 . . . . 5 (𝐶𝐵 → (𝑔𝐶𝑔𝐵))
3 frrlem5.3 . . . . . 6 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
43frrlem3 31782 . . . . 5 (𝑔𝐵 → dom 𝑔𝐴)
52, 4syl6 35 . . . 4 (𝐶𝐵 → (𝑔𝐶 → dom 𝑔𝐴))
65ralrimiv 2965 . . 3 (𝐶𝐵 → ∀𝑔𝐶 dom 𝑔𝐴)
7 iunss 4561 . . 3 ( 𝑔𝐶 dom 𝑔𝐴 ↔ ∀𝑔𝐶 dom 𝑔𝐴)
86, 7sylibr 224 . 2 (𝐶𝐵 𝑔𝐶 dom 𝑔𝐴)
91, 8syl5eqss 3649 1 (𝐶𝐵 → dom 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wral 2912  wss 3574   cuni 4436   ciun 4520   Fr wfr 5070   Se wse 5071  dom cdm 5114  cres 5116  Predcpred 5679   Fn wfn 5883  cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator