Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem5d Structured version   Visualization version   Unicode version

Theorem frrlem5d 31787
Description: Lemma for founded recursion. The domain of the union of a subset of  B is a subset of  A. (Contributed by Paul Chapman, 29-Apr-2012.)
Hypotheses
Ref Expression
frrlem5.1  |-  R  Fr  A
frrlem5.2  |-  R Se  A
frrlem5.3  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
Assertion
Ref Expression
frrlem5d  |-  ( C 
C_  B  ->  dom  U. C  C_  A )
Distinct variable groups:    A, f, x, y    f, G, x, y    R, f, x, y   
x, B
Allowed substitution hints:    B( y, f)    C( x, y, f)

Proof of Theorem frrlem5d
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 dmuni 5334 . 2  |-  dom  U. C  =  U_ g  e.  C  dom  g
2 ssel 3597 . . . . 5  |-  ( C 
C_  B  ->  (
g  e.  C  -> 
g  e.  B ) )
3 frrlem5.3 . . . . . 6  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
43frrlem3 31782 . . . . 5  |-  ( g  e.  B  ->  dom  g  C_  A )
52, 4syl6 35 . . . 4  |-  ( C 
C_  B  ->  (
g  e.  C  ->  dom  g  C_  A ) )
65ralrimiv 2965 . . 3  |-  ( C 
C_  B  ->  A. g  e.  C  dom  g  C_  A )
7 iunss 4561 . . 3  |-  ( U_ g  e.  C  dom  g  C_  A  <->  A. g  e.  C  dom  g  C_  A )
86, 7sylibr 224 . 2  |-  ( C 
C_  B  ->  U_ g  e.  C  dom  g  C_  A )
91, 8syl5eqss 3649 1  |-  ( C 
C_  B  ->  dom  U. C  C_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912    C_ wss 3574   U.cuni 4436   U_ciun 4520    Fr wfr 5070   Se wse 5071   dom cdm 5114    |` cres 5116   Predcpred 5679    Fn wfn 5883   ` cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator