![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frrlem5c | Structured version Visualization version GIF version |
Description: Lemma for founded recursion. The union of a subclass of 𝐵 is a function. (Contributed by Paul Chapman, 29-Apr-2012.) |
Ref | Expression |
---|---|
frrlem5.1 | ⊢ 𝑅 Fr 𝐴 |
frrlem5.2 | ⊢ 𝑅 Se 𝐴 |
frrlem5.3 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))} |
Ref | Expression |
---|---|
frrlem5c | ⊢ (𝐶 ⊆ 𝐵 → Fun ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 4458 | . 2 ⊢ (𝐶 ⊆ 𝐵 → ∪ 𝐶 ⊆ ∪ 𝐵) | |
2 | ssid 3624 | . . . 4 ⊢ 𝐵 ⊆ 𝐵 | |
3 | frrlem5.1 | . . . . 5 ⊢ 𝑅 Fr 𝐴 | |
4 | frrlem5.2 | . . . . 5 ⊢ 𝑅 Se 𝐴 | |
5 | frrlem5.3 | . . . . 5 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))} | |
6 | 3, 4, 5 | frrlem5b 31785 | . . . 4 ⊢ (𝐵 ⊆ 𝐵 → Rel ∪ 𝐵) |
7 | 2, 6 | ax-mp 5 | . . 3 ⊢ Rel ∪ 𝐵 |
8 | eluni 4439 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑢〉 ∈ ∪ 𝐵 ↔ ∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐵)) | |
9 | df-br 4654 | . . . . . . . . 9 ⊢ (𝑥∪ 𝐵𝑢 ↔ 〈𝑥, 𝑢〉 ∈ ∪ 𝐵) | |
10 | df-br 4654 | . . . . . . . . . . 11 ⊢ (𝑥𝑔𝑢 ↔ 〈𝑥, 𝑢〉 ∈ 𝑔) | |
11 | 10 | anbi1i 731 | . . . . . . . . . 10 ⊢ ((𝑥𝑔𝑢 ∧ 𝑔 ∈ 𝐵) ↔ (〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐵)) |
12 | 11 | exbii 1774 | . . . . . . . . 9 ⊢ (∃𝑔(𝑥𝑔𝑢 ∧ 𝑔 ∈ 𝐵) ↔ ∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐵)) |
13 | 8, 9, 12 | 3bitr4i 292 | . . . . . . . 8 ⊢ (𝑥∪ 𝐵𝑢 ↔ ∃𝑔(𝑥𝑔𝑢 ∧ 𝑔 ∈ 𝐵)) |
14 | eluni 4439 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑣〉 ∈ ∪ 𝐵 ↔ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐵)) | |
15 | df-br 4654 | . . . . . . . . 9 ⊢ (𝑥∪ 𝐵𝑣 ↔ 〈𝑥, 𝑣〉 ∈ ∪ 𝐵) | |
16 | df-br 4654 | . . . . . . . . . . 11 ⊢ (𝑥ℎ𝑣 ↔ 〈𝑥, 𝑣〉 ∈ ℎ) | |
17 | 16 | anbi1i 731 | . . . . . . . . . 10 ⊢ ((𝑥ℎ𝑣 ∧ ℎ ∈ 𝐵) ↔ (〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐵)) |
18 | 17 | exbii 1774 | . . . . . . . . 9 ⊢ (∃ℎ(𝑥ℎ𝑣 ∧ ℎ ∈ 𝐵) ↔ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐵)) |
19 | 14, 15, 18 | 3bitr4i 292 | . . . . . . . 8 ⊢ (𝑥∪ 𝐵𝑣 ↔ ∃ℎ(𝑥ℎ𝑣 ∧ ℎ ∈ 𝐵)) |
20 | 13, 19 | anbi12i 733 | . . . . . . 7 ⊢ ((𝑥∪ 𝐵𝑢 ∧ 𝑥∪ 𝐵𝑣) ↔ (∃𝑔(𝑥𝑔𝑢 ∧ 𝑔 ∈ 𝐵) ∧ ∃ℎ(𝑥ℎ𝑣 ∧ ℎ ∈ 𝐵))) |
21 | eeanv 2182 | . . . . . . 7 ⊢ (∃𝑔∃ℎ((𝑥𝑔𝑢 ∧ 𝑔 ∈ 𝐵) ∧ (𝑥ℎ𝑣 ∧ ℎ ∈ 𝐵)) ↔ (∃𝑔(𝑥𝑔𝑢 ∧ 𝑔 ∈ 𝐵) ∧ ∃ℎ(𝑥ℎ𝑣 ∧ ℎ ∈ 𝐵))) | |
22 | 20, 21 | bitr4i 267 | . . . . . 6 ⊢ ((𝑥∪ 𝐵𝑢 ∧ 𝑥∪ 𝐵𝑣) ↔ ∃𝑔∃ℎ((𝑥𝑔𝑢 ∧ 𝑔 ∈ 𝐵) ∧ (𝑥ℎ𝑣 ∧ ℎ ∈ 𝐵))) |
23 | 3, 4, 5 | frrlem5 31784 | . . . . . . . . 9 ⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
24 | 23 | impcom 446 | . . . . . . . 8 ⊢ (((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → 𝑢 = 𝑣) |
25 | 24 | an4s 869 | . . . . . . 7 ⊢ (((𝑥𝑔𝑢 ∧ 𝑔 ∈ 𝐵) ∧ (𝑥ℎ𝑣 ∧ ℎ ∈ 𝐵)) → 𝑢 = 𝑣) |
26 | 25 | exlimivv 1860 | . . . . . 6 ⊢ (∃𝑔∃ℎ((𝑥𝑔𝑢 ∧ 𝑔 ∈ 𝐵) ∧ (𝑥ℎ𝑣 ∧ ℎ ∈ 𝐵)) → 𝑢 = 𝑣) |
27 | 22, 26 | sylbi 207 | . . . . 5 ⊢ ((𝑥∪ 𝐵𝑢 ∧ 𝑥∪ 𝐵𝑣) → 𝑢 = 𝑣) |
28 | 27 | ax-gen 1722 | . . . 4 ⊢ ∀𝑣((𝑥∪ 𝐵𝑢 ∧ 𝑥∪ 𝐵𝑣) → 𝑢 = 𝑣) |
29 | 28 | gen2 1723 | . . 3 ⊢ ∀𝑥∀𝑢∀𝑣((𝑥∪ 𝐵𝑢 ∧ 𝑥∪ 𝐵𝑣) → 𝑢 = 𝑣) |
30 | dffun2 5898 | . . 3 ⊢ (Fun ∪ 𝐵 ↔ (Rel ∪ 𝐵 ∧ ∀𝑥∀𝑢∀𝑣((𝑥∪ 𝐵𝑢 ∧ 𝑥∪ 𝐵𝑣) → 𝑢 = 𝑣))) | |
31 | 7, 29, 30 | mpbir2an 955 | . 2 ⊢ Fun ∪ 𝐵 |
32 | funss 5907 | . 2 ⊢ (∪ 𝐶 ⊆ ∪ 𝐵 → (Fun ∪ 𝐵 → Fun ∪ 𝐶)) | |
33 | 1, 31, 32 | mpisyl 21 | 1 ⊢ (𝐶 ⊆ 𝐵 → Fun ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 ∀wal 1481 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {cab 2608 ∀wral 2912 ⊆ wss 3574 〈cop 4183 ∪ cuni 4436 class class class wbr 4653 Fr wfr 5070 Se wse 5071 ↾ cres 5116 Rel wrel 5119 Predcpred 5679 Fun wfun 5882 Fn wfn 5883 ‘cfv 5888 (class class class)co 6650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-trpred 31718 |
This theorem is referenced by: frrlem10 31791 |
Copyright terms: Public domain | W3C validator |