Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fun2dmnopgexmpl Structured version   Visualization version   GIF version

Theorem fun2dmnopgexmpl 41303
Description: A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
fun2dmnopgexmpl (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → ¬ 𝐺 ∈ (V × V))

Proof of Theorem fun2dmnopgexmpl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ne1 11088 . . . . . . . 8 0 ≠ 1
21neii 2796 . . . . . . 7 ¬ 0 = 1
32intnanr 961 . . . . . 6 ¬ (0 = 1 ∧ 𝑎 = {0})
43intnanr 961 . . . . 5 ¬ ((0 = 1 ∧ 𝑎 = {0}) ∧ ((0 = 1 ∧ 𝑏 = {0, 1}) ∨ (0 = 1 ∧ 𝑏 = {0, 1})))
54gen2 1723 . . . 4 𝑎𝑏 ¬ ((0 = 1 ∧ 𝑎 = {0}) ∧ ((0 = 1 ∧ 𝑏 = {0, 1}) ∨ (0 = 1 ∧ 𝑏 = {0, 1})))
6 eqeq1 2626 . . . . . . . 8 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → (𝐺 = ⟨𝑎, 𝑏⟩ ↔ {⟨0, 1⟩, ⟨1, 1⟩} = ⟨𝑎, 𝑏⟩))
7 c0ex 10034 . . . . . . . . 9 0 ∈ V
8 1ex 10035 . . . . . . . . 9 1 ∈ V
9 vex 3203 . . . . . . . . 9 𝑎 ∈ V
10 vex 3203 . . . . . . . . 9 𝑏 ∈ V
117, 8, 8, 8, 9, 10propeqop 4970 . . . . . . . 8 ({⟨0, 1⟩, ⟨1, 1⟩} = ⟨𝑎, 𝑏⟩ ↔ ((0 = 1 ∧ 𝑎 = {0}) ∧ ((0 = 1 ∧ 𝑏 = {0, 1}) ∨ (0 = 1 ∧ 𝑏 = {0, 1}))))
126, 11syl6bb 276 . . . . . . 7 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → (𝐺 = ⟨𝑎, 𝑏⟩ ↔ ((0 = 1 ∧ 𝑎 = {0}) ∧ ((0 = 1 ∧ 𝑏 = {0, 1}) ∨ (0 = 1 ∧ 𝑏 = {0, 1})))))
1312notbid 308 . . . . . 6 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → (¬ 𝐺 = ⟨𝑎, 𝑏⟩ ↔ ¬ ((0 = 1 ∧ 𝑎 = {0}) ∧ ((0 = 1 ∧ 𝑏 = {0, 1}) ∨ (0 = 1 ∧ 𝑏 = {0, 1})))))
1413albidv 1849 . . . . 5 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → (∀𝑏 ¬ 𝐺 = ⟨𝑎, 𝑏⟩ ↔ ∀𝑏 ¬ ((0 = 1 ∧ 𝑎 = {0}) ∧ ((0 = 1 ∧ 𝑏 = {0, 1}) ∨ (0 = 1 ∧ 𝑏 = {0, 1})))))
1514albidv 1849 . . . 4 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → (∀𝑎𝑏 ¬ 𝐺 = ⟨𝑎, 𝑏⟩ ↔ ∀𝑎𝑏 ¬ ((0 = 1 ∧ 𝑎 = {0}) ∧ ((0 = 1 ∧ 𝑏 = {0, 1}) ∨ (0 = 1 ∧ 𝑏 = {0, 1})))))
165, 15mpbiri 248 . . 3 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → ∀𝑎𝑏 ¬ 𝐺 = ⟨𝑎, 𝑏⟩)
17 2nexaln 1757 . . 3 (¬ ∃𝑎𝑏 𝐺 = ⟨𝑎, 𝑏⟩ ↔ ∀𝑎𝑏 ¬ 𝐺 = ⟨𝑎, 𝑏⟩)
1816, 17sylibr 224 . 2 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → ¬ ∃𝑎𝑏 𝐺 = ⟨𝑎, 𝑏⟩)
19 elvv 5177 . 2 (𝐺 ∈ (V × V) ↔ ∃𝑎𝑏 𝐺 = ⟨𝑎, 𝑏⟩)
2018, 19sylnibr 319 1 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  {csn 4177  {cpr 4179  cop 4183   × cxp 5112  0cc0 9936  1c1 9937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004  ax-1ne0 10005
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator