Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fun2dmnopgexmpl Structured version   Visualization version   Unicode version

Theorem fun2dmnopgexmpl 41303
Description: A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
fun2dmnopgexmpl  |-  ( G  =  { <. 0 ,  1 >. ,  <. 1 ,  1 >. }  ->  -.  G  e.  ( _V  X.  _V )
)

Proof of Theorem fun2dmnopgexmpl
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ne1 11088 . . . . . . . 8  |-  0  =/=  1
21neii 2796 . . . . . . 7  |-  -.  0  =  1
32intnanr 961 . . . . . 6  |-  -.  (
0  =  1  /\  a  =  { 0 } )
43intnanr 961 . . . . 5  |-  -.  (
( 0  =  1  /\  a  =  {
0 } )  /\  ( ( 0  =  1  /\  b  =  { 0 ,  1 } )  \/  (
0  =  1  /\  b  =  { 0 ,  1 } ) ) )
54gen2 1723 . . . 4  |-  A. a A. b  -.  (
( 0  =  1  /\  a  =  {
0 } )  /\  ( ( 0  =  1  /\  b  =  { 0 ,  1 } )  \/  (
0  =  1  /\  b  =  { 0 ,  1 } ) ) )
6 eqeq1 2626 . . . . . . . 8  |-  ( G  =  { <. 0 ,  1 >. ,  <. 1 ,  1 >. }  ->  ( G  = 
<. a ,  b >.  <->  {
<. 0 ,  1
>. ,  <. 1 ,  1 >. }  =  <. a ,  b >. )
)
7 c0ex 10034 . . . . . . . . 9  |-  0  e.  _V
8 1ex 10035 . . . . . . . . 9  |-  1  e.  _V
9 vex 3203 . . . . . . . . 9  |-  a  e. 
_V
10 vex 3203 . . . . . . . . 9  |-  b  e. 
_V
117, 8, 8, 8, 9, 10propeqop 4970 . . . . . . . 8  |-  ( {
<. 0 ,  1
>. ,  <. 1 ,  1 >. }  =  <. a ,  b >.  <->  ( (
0  =  1  /\  a  =  { 0 } )  /\  (
( 0  =  1  /\  b  =  {
0 ,  1 } )  \/  ( 0  =  1  /\  b  =  { 0 ,  1 } ) ) ) )
126, 11syl6bb 276 . . . . . . 7  |-  ( G  =  { <. 0 ,  1 >. ,  <. 1 ,  1 >. }  ->  ( G  = 
<. a ,  b >.  <->  ( ( 0  =  1  /\  a  =  {
0 } )  /\  ( ( 0  =  1  /\  b  =  { 0 ,  1 } )  \/  (
0  =  1  /\  b  =  { 0 ,  1 } ) ) ) ) )
1312notbid 308 . . . . . 6  |-  ( G  =  { <. 0 ,  1 >. ,  <. 1 ,  1 >. }  ->  ( -.  G  =  <. a ,  b
>. 
<->  -.  ( ( 0  =  1  /\  a  =  { 0 } )  /\  ( ( 0  =  1  /\  b  =  { 0 ,  1 } )  \/  (
0  =  1  /\  b  =  { 0 ,  1 } ) ) ) ) )
1413albidv 1849 . . . . 5  |-  ( G  =  { <. 0 ,  1 >. ,  <. 1 ,  1 >. }  ->  ( A. b  -.  G  =  <. a ,  b >.  <->  A. b  -.  ( ( 0  =  1  /\  a  =  { 0 } )  /\  ( ( 0  =  1  /\  b  =  { 0 ,  1 } )  \/  (
0  =  1  /\  b  =  { 0 ,  1 } ) ) ) ) )
1514albidv 1849 . . . 4  |-  ( G  =  { <. 0 ,  1 >. ,  <. 1 ,  1 >. }  ->  ( A. a A. b  -.  G  =  <. a ,  b
>. 
<-> 
A. a A. b  -.  ( ( 0  =  1  /\  a  =  { 0 } )  /\  ( ( 0  =  1  /\  b  =  { 0 ,  1 } )  \/  (
0  =  1  /\  b  =  { 0 ,  1 } ) ) ) ) )
165, 15mpbiri 248 . . 3  |-  ( G  =  { <. 0 ,  1 >. ,  <. 1 ,  1 >. }  ->  A. a A. b  -.  G  =  <. a ,  b >. )
17 2nexaln 1757 . . 3  |-  ( -. 
E. a E. b  G  =  <. a ,  b >.  <->  A. a A. b  -.  G  =  <. a ,  b >. )
1816, 17sylibr 224 . 2  |-  ( G  =  { <. 0 ,  1 >. ,  <. 1 ,  1 >. }  ->  -.  E. a E. b  G  =  <. a ,  b >.
)
19 elvv 5177 . 2  |-  ( G  e.  ( _V  X.  _V )  <->  E. a E. b  G  =  <. a ,  b >. )
2018, 19sylnibr 319 1  |-  ( G  =  { <. 0 ,  1 >. ,  <. 1 ,  1 >. }  ->  -.  G  e.  ( _V  X.  _V )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   {csn 4177   {cpr 4179   <.cop 4183    X. cxp 5112   0cc0 9936   1c1 9937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004  ax-1ne0 10005
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator