Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funop1 Structured version   Visualization version   GIF version

Theorem funop1 41302
Description: A function is an ordered pair iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
funop1 (∃𝑥𝑦 𝐹 = ⟨𝑥, 𝑦⟩ → (Fun 𝐹 ↔ ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩}))
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem funop1
Dummy variables 𝑎 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq12 4404 . . . 4 ((𝑥 = 𝑣𝑦 = 𝑤) → ⟨𝑥, 𝑦⟩ = ⟨𝑣, 𝑤⟩)
21eqeq2d 2632 . . 3 ((𝑥 = 𝑣𝑦 = 𝑤) → (𝐹 = ⟨𝑥, 𝑦⟩ ↔ 𝐹 = ⟨𝑣, 𝑤⟩))
32cbvex2v 2287 . 2 (∃𝑥𝑦 𝐹 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑣𝑤 𝐹 = ⟨𝑣, 𝑤⟩)
4 vex 3203 . . . . . . 7 𝑣 ∈ V
5 vex 3203 . . . . . . 7 𝑤 ∈ V
64, 5funopsn 6413 . . . . . 6 ((Fun 𝐹𝐹 = ⟨𝑣, 𝑤⟩) → ∃𝑎(𝑣 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
7 vex 3203 . . . . . . . . 9 𝑎 ∈ V
8 opeq12 4404 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑎) → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑎⟩)
98sneqd 4189 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑎) → {⟨𝑥, 𝑦⟩} = {⟨𝑎, 𝑎⟩})
109eqeq2d 2632 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐹 = {⟨𝑥, 𝑦⟩} ↔ 𝐹 = {⟨𝑎, 𝑎⟩}))
117, 7, 10spc2ev 3301 . . . . . . . 8 (𝐹 = {⟨𝑎, 𝑎⟩} → ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩})
1211adantl 482 . . . . . . 7 ((𝑣 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}) → ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩})
1312exlimiv 1858 . . . . . 6 (∃𝑎(𝑣 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}) → ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩})
146, 13syl 17 . . . . 5 ((Fun 𝐹𝐹 = ⟨𝑣, 𝑤⟩) → ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩})
1514expcom 451 . . . 4 (𝐹 = ⟨𝑣, 𝑤⟩ → (Fun 𝐹 → ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩}))
16 vex 3203 . . . . . . 7 𝑥 ∈ V
17 vex 3203 . . . . . . 7 𝑦 ∈ V
1816, 17funsn 5939 . . . . . 6 Fun {⟨𝑥, 𝑦⟩}
19 funeq 5908 . . . . . 6 (𝐹 = {⟨𝑥, 𝑦⟩} → (Fun 𝐹 ↔ Fun {⟨𝑥, 𝑦⟩}))
2018, 19mpbiri 248 . . . . 5 (𝐹 = {⟨𝑥, 𝑦⟩} → Fun 𝐹)
2120exlimivv 1860 . . . 4 (∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩} → Fun 𝐹)
2215, 21impbid1 215 . . 3 (𝐹 = ⟨𝑣, 𝑤⟩ → (Fun 𝐹 ↔ ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩}))
2322exlimivv 1860 . 2 (∃𝑣𝑤 𝐹 = ⟨𝑣, 𝑤⟩ → (Fun 𝐹 ↔ ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩}))
243, 23sylbi 207 1 (∃𝑥𝑦 𝐹 = ⟨𝑥, 𝑦⟩ → (Fun 𝐹 ↔ ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  {csn 4177  cop 4183  Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator