Proof of Theorem fvcofneq
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 473 |
. . . 4
⊢ ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → 𝐺 Fn 𝐴) |
| 2 | | elin 3796 |
. . . . . 6
⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) |
| 3 | | simpl 473 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐴) |
| 4 | 2, 3 | sylbi 207 |
. . . . 5
⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → 𝑋 ∈ 𝐴) |
| 5 | 4 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → 𝑋 ∈ 𝐴) |
| 6 | | fvco2 6273 |
. . . 4
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| 7 | 1, 5, 6 | syl2an 494 |
. . 3
⊢ (((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥))) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| 8 | | simpr 477 |
. . . . 5
⊢ ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → 𝐾 Fn 𝐵) |
| 9 | | simpr 477 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 10 | 2, 9 | sylbi 207 |
. . . . . 6
⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → 𝑋 ∈ 𝐵) |
| 11 | 10 | 3ad2ant1 1082 |
. . . . 5
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → 𝑋 ∈ 𝐵) |
| 12 | | fvco2 6273 |
. . . . 5
⊢ ((𝐾 Fn 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝐻 ∘ 𝐾)‘𝑋) = (𝐻‘(𝐾‘𝑋))) |
| 13 | 8, 11, 12 | syl2an 494 |
. . . 4
⊢ (((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥))) → ((𝐻 ∘ 𝐾)‘𝑋) = (𝐻‘(𝐾‘𝑋))) |
| 14 | | fveq2 6191 |
. . . . . . 7
⊢ ((𝐾‘𝑋) = (𝐺‘𝑋) → (𝐻‘(𝐾‘𝑋)) = (𝐻‘(𝐺‘𝑋))) |
| 15 | 14 | eqcoms 2630 |
. . . . . 6
⊢ ((𝐺‘𝑋) = (𝐾‘𝑋) → (𝐻‘(𝐾‘𝑋)) = (𝐻‘(𝐺‘𝑋))) |
| 16 | 15 | 3ad2ant2 1083 |
. . . . 5
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → (𝐻‘(𝐾‘𝑋)) = (𝐻‘(𝐺‘𝑋))) |
| 17 | 16 | adantl 482 |
. . . 4
⊢ (((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥))) → (𝐻‘(𝐾‘𝑋)) = (𝐻‘(𝐺‘𝑋))) |
| 18 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝐺 Fn 𝐴 → 𝐺 Fn 𝐴) |
| 19 | | fnfvelrn 6356 |
. . . . . . . . . . . 12
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) ∈ ran 𝐺) |
| 20 | 18, 4, 19 | syl2anr 495 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ 𝐺 Fn 𝐴) → (𝐺‘𝑋) ∈ ran 𝐺) |
| 21 | 20 | ex 450 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → (𝐺 Fn 𝐴 → (𝐺‘𝑋) ∈ ran 𝐺)) |
| 22 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝐾 Fn 𝐵 → 𝐾 Fn 𝐵) |
| 23 | | fnfvelrn 6356 |
. . . . . . . . . . . 12
⊢ ((𝐾 Fn 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐾‘𝑋) ∈ ran 𝐾) |
| 24 | 22, 10, 23 | syl2anr 495 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ 𝐾 Fn 𝐵) → (𝐾‘𝑋) ∈ ran 𝐾) |
| 25 | 24 | ex 450 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → (𝐾 Fn 𝐵 → (𝐾‘𝑋) ∈ ran 𝐾)) |
| 26 | 21, 25 | anim12d 586 |
. . . . . . . . 9
⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → ((𝐺‘𝑋) ∈ ran 𝐺 ∧ (𝐾‘𝑋) ∈ ran 𝐾))) |
| 27 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢ ((𝐾‘𝑋) = (𝐺‘𝑋) → ((𝐾‘𝑋) ∈ ran 𝐾 ↔ (𝐺‘𝑋) ∈ ran 𝐾)) |
| 28 | 27 | eqcoms 2630 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑋) = (𝐾‘𝑋) → ((𝐾‘𝑋) ∈ ran 𝐾 ↔ (𝐺‘𝑋) ∈ ran 𝐾)) |
| 29 | 28 | anbi2d 740 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑋) = (𝐾‘𝑋) → (((𝐺‘𝑋) ∈ ran 𝐺 ∧ (𝐾‘𝑋) ∈ ran 𝐾) ↔ ((𝐺‘𝑋) ∈ ran 𝐺 ∧ (𝐺‘𝑋) ∈ ran 𝐾))) |
| 30 | | elin 3796 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾) ↔ ((𝐺‘𝑋) ∈ ran 𝐺 ∧ (𝐺‘𝑋) ∈ ran 𝐾)) |
| 31 | 30 | biimpri 218 |
. . . . . . . . . 10
⊢ (((𝐺‘𝑋) ∈ ran 𝐺 ∧ (𝐺‘𝑋) ∈ ran 𝐾) → (𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾)) |
| 32 | 29, 31 | syl6bi 243 |
. . . . . . . . 9
⊢ ((𝐺‘𝑋) = (𝐾‘𝑋) → (((𝐺‘𝑋) ∈ ran 𝐺 ∧ (𝐾‘𝑋) ∈ ran 𝐾) → (𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾))) |
| 33 | 26, 32 | sylan9 689 |
. . . . . . . 8
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋)) → ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → (𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾))) |
| 34 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐺‘𝑋) → (𝐹‘𝑥) = (𝐹‘(𝐺‘𝑋))) |
| 35 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐺‘𝑋) → (𝐻‘𝑥) = (𝐻‘(𝐺‘𝑋))) |
| 36 | 34, 35 | eqeq12d 2637 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐺‘𝑋) → ((𝐹‘𝑥) = (𝐻‘𝑥) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐻‘(𝐺‘𝑋)))) |
| 37 | 36 | rspcva 3307 |
. . . . . . . . . 10
⊢ (((𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → (𝐹‘(𝐺‘𝑋)) = (𝐻‘(𝐺‘𝑋))) |
| 38 | 37 | eqcomd 2628 |
. . . . . . . . 9
⊢ (((𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → (𝐻‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑋))) |
| 39 | 38 | ex 450 |
. . . . . . . 8
⊢ ((𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾) → (∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥) → (𝐻‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑋)))) |
| 40 | 33, 39 | syl6 35 |
. . . . . . 7
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋)) → ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → (∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥) → (𝐻‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑋))))) |
| 41 | 40 | com23 86 |
. . . . . 6
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋)) → (∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥) → ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → (𝐻‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑋))))) |
| 42 | 41 | 3impia 1261 |
. . . . 5
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → (𝐻‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑋)))) |
| 43 | 42 | impcom 446 |
. . . 4
⊢ (((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥))) → (𝐻‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑋))) |
| 44 | 13, 17, 43 | 3eqtrrd 2661 |
. . 3
⊢ (((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥))) → (𝐹‘(𝐺‘𝑋)) = ((𝐻 ∘ 𝐾)‘𝑋)) |
| 45 | 7, 44 | eqtrd 2656 |
. 2
⊢ (((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥))) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋)) |
| 46 | 45 | ex 450 |
1
⊢ ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) |