| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvcofneq | Structured version Visualization version Unicode version | ||
| Description: The values of two function compositions are equal if the values of the composed functions are pairwise equal. (Contributed by AV, 26-Jan-2019.) |
| Ref | Expression |
|---|---|
| fvcofneq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . 4
| |
| 2 | elin 3796 |
. . . . . 6
| |
| 3 | simpl 473 |
. . . . . 6
| |
| 4 | 2, 3 | sylbi 207 |
. . . . 5
|
| 5 | 4 | 3ad2ant1 1082 |
. . . 4
|
| 6 | fvco2 6273 |
. . . 4
| |
| 7 | 1, 5, 6 | syl2an 494 |
. . 3
|
| 8 | simpr 477 |
. . . . 5
| |
| 9 | simpr 477 |
. . . . . . 7
| |
| 10 | 2, 9 | sylbi 207 |
. . . . . 6
|
| 11 | 10 | 3ad2ant1 1082 |
. . . . 5
|
| 12 | fvco2 6273 |
. . . . 5
| |
| 13 | 8, 11, 12 | syl2an 494 |
. . . 4
|
| 14 | fveq2 6191 |
. . . . . . 7
| |
| 15 | 14 | eqcoms 2630 |
. . . . . 6
|
| 16 | 15 | 3ad2ant2 1083 |
. . . . 5
|
| 17 | 16 | adantl 482 |
. . . 4
|
| 18 | id 22 |
. . . . . . . . . . . 12
| |
| 19 | fnfvelrn 6356 |
. . . . . . . . . . . 12
| |
| 20 | 18, 4, 19 | syl2anr 495 |
. . . . . . . . . . 11
|
| 21 | 20 | ex 450 |
. . . . . . . . . 10
|
| 22 | id 22 |
. . . . . . . . . . . 12
| |
| 23 | fnfvelrn 6356 |
. . . . . . . . . . . 12
| |
| 24 | 22, 10, 23 | syl2anr 495 |
. . . . . . . . . . 11
|
| 25 | 24 | ex 450 |
. . . . . . . . . 10
|
| 26 | 21, 25 | anim12d 586 |
. . . . . . . . 9
|
| 27 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 28 | 27 | eqcoms 2630 |
. . . . . . . . . . 11
|
| 29 | 28 | anbi2d 740 |
. . . . . . . . . 10
|
| 30 | elin 3796 |
. . . . . . . . . . 11
| |
| 31 | 30 | biimpri 218 |
. . . . . . . . . 10
|
| 32 | 29, 31 | syl6bi 243 |
. . . . . . . . 9
|
| 33 | 26, 32 | sylan9 689 |
. . . . . . . 8
|
| 34 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 35 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 36 | 34, 35 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 37 | 36 | rspcva 3307 |
. . . . . . . . . 10
|
| 38 | 37 | eqcomd 2628 |
. . . . . . . . 9
|
| 39 | 38 | ex 450 |
. . . . . . . 8
|
| 40 | 33, 39 | syl6 35 |
. . . . . . 7
|
| 41 | 40 | com23 86 |
. . . . . 6
|
| 42 | 41 | 3impia 1261 |
. . . . 5
|
| 43 | 42 | impcom 446 |
. . . 4
|
| 44 | 13, 17, 43 | 3eqtrrd 2661 |
. . 3
|
| 45 | 7, 44 | eqtrd 2656 |
. 2
|
| 46 | 45 | ex 450 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
| This theorem is referenced by: fvcosymgeq 17849 |
| Copyright terms: Public domain | W3C validator |