![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim12d | Structured version Visualization version GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
Ref | Expression |
---|---|
anim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
anim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
anim12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | anim12d.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | idd 24 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → (𝜒 ∧ 𝜏))) | |
4 | 1, 2, 3 | syl2and 500 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: anim12d1 587 anim1d 588 anim2d 589 prth 595 im2anan9 880 anim12dan 882 3anim123d 1406 mo3 2507 2euswap 2548 ssunsn2 4359 disjiun 4640 soss 5053 wess 5101 frinxp 5184 trin2 5519 xp11 5569 ordtri3OLD 5760 oneqmini 5776 funss 5907 fun 6066 fvcofneq 6367 dff13 6512 f1cofveqaeq 6515 f1eqcocnv 6556 isores3 6585 isosolem 6597 isowe2 6600 ordom 7074 f1oweALT 7152 f1o2ndf1 7285 tposfn2 7374 tposf1o2 7378 wfrlem4 7418 smo11 7461 tz7.48lem 7536 om00 7655 omsmo 7734 ixpfi2 8264 elfiun 8336 supmo 8358 infmo 8401 alephord 8898 cardaleph 8912 dfac5 8951 fin1a2lem9 9230 axdc3lem2 9273 zorn2lem6 9323 grudomon 9639 indpi 9729 genpnmax 9829 reclem3pr 9871 reclem4pr 9872 suplem1pr 9874 supsrlem 9932 dedekind 10200 lemul12b 10880 fimaxre 10968 lbreu 10973 supadd 10991 supmullem2 10994 cju 11016 nnind 11038 uz11 11710 xrre2 12001 qbtwnre 12030 xrsupexmnf 12135 xrinfmexpnf 12136 ico0 12221 ioc0 12222 ssfzoulel 12562 ishashinf 13247 swrdccatin2 13487 coss12d 13711 sqrlem6 13988 o1lo1 14268 ruclem9 14967 isprm3 15396 eulerthlem2 15487 prmdiveq 15491 ramub2 15718 cictr 16465 joinfval 17001 meetfval 17015 clatl 17116 lubun 17123 ipodrsima 17165 dirtr 17236 mulgpropd 17584 dprdss 18428 subrgdvds 18794 dmatsubcl 20304 scmatcrng 20327 epttop 20813 cnpresti 21092 cnprest 21093 lmmo 21184 1stcrest 21256 lly1stc 21299 txcnp 21423 addcnlem 22667 clmvscom 22890 caussi 23095 bcthlem5 23125 ovollb2lem 23256 voliunlem1 23318 ioombl1lem4 23329 rolle 23753 c1lip1 23760 c1lip3 23762 ulmval 24134 sqf11 24865 fsumvma 24938 dchrelbas3 24963 acopy 25724 brbtwn2 25785 axeuclidlem 25842 axcontlem9 25852 axcontlem10 25853 umgrvad2edg 26105 upgrwlkdvdelem 26632 usgr2wlkneq 26652 2wlkdlem6 26827 umgr2adedgwlklem 26840 umgr2adedgspth 26844 2pthfrgrrn2 27147 frgrnbnb 27157 fusgr2wsp2nb 27198 nmcvcn 27550 sspmval 27588 sspimsval 27593 sspph 27710 shsubcl 28077 shorth 28154 5oalem6 28518 strlem1 29109 atexch 29240 cdj3i 29300 xrofsup 29533 nnindf 29565 cnre2csqima 29957 erdszelem9 31181 erdsze2lem2 31186 ss2mcls 31465 funpsstri 31663 dfon2lem4 31691 dfon2 31697 trpredrec 31738 frmin 31739 wsuclem 31773 wsuclemOLD 31774 frrlem4 31783 nocvxminlem 31893 nocvxmin 31894 conway 31910 elfuns 32022 btwnswapid 32124 ifscgr 32151 hilbert1.2 32262 elicc3 32311 tailfb 32372 wl-mo3t 33358 ltflcei 33397 tan2h 33401 mblfinlem3 33448 fzmul 33537 metf1o 33551 ismtycnv 33601 ismtyres 33607 crngohomfo 33805 hlhgt2 34675 hl2at 34691 2llnjN 34853 2lplnj 34906 linepsubN 35038 cdlemg33b0 35989 dvh3dim3N 36738 mapdh9a 37079 iocinico 37797 clcnvlem 37930 pm11.59 38591 afvres 41252 rhmsscrnghm 42026 ply1mulgsumlem1 42174 fldivexpfllog2 42359 |
Copyright terms: Public domain | W3C validator |