MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnf Structured version   Visualization version   GIF version

Theorem fvmptnf 6302
Description: The value of a function given by an ordered-pair class abstraction is the empty set when the class it would otherwise map to is a proper class. This version of fvmptn 6303 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvmptf.1 𝑥𝐴
fvmptf.2 𝑥𝐶
fvmptf.3 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptf.4 𝐹 = (𝑥𝐷𝐵)
Assertion
Ref Expression
fvmptnf 𝐶 ∈ V → (𝐹𝐴) = ∅)
Distinct variable group:   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptnf
StepHypRef Expression
1 fvmptf.4 . . . . 5 𝐹 = (𝑥𝐷𝐵)
21dmmptss 5631 . . . 4 dom 𝐹𝐷
32sseli 3599 . . 3 (𝐴 ∈ dom 𝐹𝐴𝐷)
4 eqid 2622 . . . . . . 7 (𝑥𝐷 ↦ ( I ‘𝐵)) = (𝑥𝐷 ↦ ( I ‘𝐵))
51, 4fvmptex 6294 . . . . . 6 (𝐹𝐴) = ((𝑥𝐷 ↦ ( I ‘𝐵))‘𝐴)
6 fvex 6201 . . . . . . 7 ( I ‘𝐶) ∈ V
7 fvmptf.1 . . . . . . . 8 𝑥𝐴
8 nfcv 2764 . . . . . . . . 9 𝑥 I
9 fvmptf.2 . . . . . . . . 9 𝑥𝐶
108, 9nffv 6198 . . . . . . . 8 𝑥( I ‘𝐶)
11 fvmptf.3 . . . . . . . . 9 (𝑥 = 𝐴𝐵 = 𝐶)
1211fveq2d 6195 . . . . . . . 8 (𝑥 = 𝐴 → ( I ‘𝐵) = ( I ‘𝐶))
137, 10, 12, 4fvmptf 6301 . . . . . . 7 ((𝐴𝐷 ∧ ( I ‘𝐶) ∈ V) → ((𝑥𝐷 ↦ ( I ‘𝐵))‘𝐴) = ( I ‘𝐶))
146, 13mpan2 707 . . . . . 6 (𝐴𝐷 → ((𝑥𝐷 ↦ ( I ‘𝐵))‘𝐴) = ( I ‘𝐶))
155, 14syl5eq 2668 . . . . 5 (𝐴𝐷 → (𝐹𝐴) = ( I ‘𝐶))
16 fvprc 6185 . . . . 5 𝐶 ∈ V → ( I ‘𝐶) = ∅)
1715, 16sylan9eq 2676 . . . 4 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹𝐴) = ∅)
1817expcom 451 . . 3 𝐶 ∈ V → (𝐴𝐷 → (𝐹𝐴) = ∅))
193, 18syl5 34 . 2 𝐶 ∈ V → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅))
20 ndmfv 6218 . 2 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
2119, 20pm2.61d1 171 1 𝐶 ∈ V → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1483  wcel 1990  wnfc 2751  Vcvv 3200  c0 3915  cmpt 4729   I cid 5023  dom cdm 5114  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  fvmptn  6303  rdgsucmptnf  7525  frsucmptn  7534
  Copyright terms: Public domain W3C validator