MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptex Structured version   Visualization version   GIF version

Theorem fvmptex 6294
Description: Express a function 𝐹 whose value 𝐵 may not always be a set in terms of another function 𝐺 for which sethood is guaranteed. (Note that ( I ‘𝐵) is just shorthand for if(𝐵 ∈ V, 𝐵, ∅), and it is always a set by fvex 6201.) Note also that these functions are not the same; wherever 𝐵(𝐶) is not a set, 𝐶 is not in the domain of 𝐹 (so it evaluates to the empty set), but 𝐶 is in the domain of 𝐺, and 𝐺(𝐶) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptex.1 𝐹 = (𝑥𝐴𝐵)
fvmptex.2 𝐺 = (𝑥𝐴 ↦ ( I ‘𝐵))
Assertion
Ref Expression
fvmptex (𝐹𝐶) = (𝐺𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem fvmptex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3536 . . . 4 (𝑦 = 𝐶𝑦 / 𝑥𝐵 = 𝐶 / 𝑥𝐵)
2 fvmptex.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
3 nfcv 2764 . . . . . 6 𝑦𝐵
4 nfcsb1v 3549 . . . . . 6 𝑥𝑦 / 𝑥𝐵
5 csbeq1a 3542 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
63, 4, 5cbvmpt 4749 . . . . 5 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
72, 6eqtri 2644 . . . 4 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
81, 7fvmpti 6281 . . 3 (𝐶𝐴 → (𝐹𝐶) = ( I ‘𝐶 / 𝑥𝐵))
91fveq2d 6195 . . . 4 (𝑦 = 𝐶 → ( I ‘𝑦 / 𝑥𝐵) = ( I ‘𝐶 / 𝑥𝐵))
10 fvmptex.2 . . . . 5 𝐺 = (𝑥𝐴 ↦ ( I ‘𝐵))
11 nfcv 2764 . . . . . 6 𝑦( I ‘𝐵)
12 nfcv 2764 . . . . . . 7 𝑥 I
1312, 4nffv 6198 . . . . . 6 𝑥( I ‘𝑦 / 𝑥𝐵)
145fveq2d 6195 . . . . . 6 (𝑥 = 𝑦 → ( I ‘𝐵) = ( I ‘𝑦 / 𝑥𝐵))
1511, 13, 14cbvmpt 4749 . . . . 5 (𝑥𝐴 ↦ ( I ‘𝐵)) = (𝑦𝐴 ↦ ( I ‘𝑦 / 𝑥𝐵))
1610, 15eqtri 2644 . . . 4 𝐺 = (𝑦𝐴 ↦ ( I ‘𝑦 / 𝑥𝐵))
17 fvex 6201 . . . 4 ( I ‘𝐶 / 𝑥𝐵) ∈ V
189, 16, 17fvmpt 6282 . . 3 (𝐶𝐴 → (𝐺𝐶) = ( I ‘𝐶 / 𝑥𝐵))
198, 18eqtr4d 2659 . 2 (𝐶𝐴 → (𝐹𝐶) = (𝐺𝐶))
202dmmptss 5631 . . . . . 6 dom 𝐹𝐴
2120sseli 3599 . . . . 5 (𝐶 ∈ dom 𝐹𝐶𝐴)
2221con3i 150 . . . 4 𝐶𝐴 → ¬ 𝐶 ∈ dom 𝐹)
23 ndmfv 6218 . . . 4 𝐶 ∈ dom 𝐹 → (𝐹𝐶) = ∅)
2422, 23syl 17 . . 3 𝐶𝐴 → (𝐹𝐶) = ∅)
25 fvex 6201 . . . . . 6 ( I ‘𝐵) ∈ V
2625, 10dmmpti 6023 . . . . 5 dom 𝐺 = 𝐴
2726eleq2i 2693 . . . 4 (𝐶 ∈ dom 𝐺𝐶𝐴)
28 ndmfv 6218 . . . 4 𝐶 ∈ dom 𝐺 → (𝐺𝐶) = ∅)
2927, 28sylnbir 321 . . 3 𝐶𝐴 → (𝐺𝐶) = ∅)
3024, 29eqtr4d 2659 . 2 𝐶𝐴 → (𝐹𝐶) = (𝐺𝐶))
3119, 30pm2.61i 176 1 (𝐹𝐶) = (𝐺𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  csb 3533  c0 3915  cmpt 4729   I cid 5023  dom cdm 5114  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  fvmptnf  6302  sumeq2ii  14423  prodeq2ii  14643
  Copyright terms: Public domain W3C validator