![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ghomidOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ghmid 17666 as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ghomidOLD.1 | ⊢ 𝑈 = (GId‘𝐺) |
ghomidOLD.2 | ⊢ 𝑇 = (GId‘𝐻) |
Ref | Expression |
---|---|
ghomidOLD | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . . . . 7 ⊢ ran 𝐺 = ran 𝐺 | |
2 | ghomidOLD.1 | . . . . . . 7 ⊢ 𝑈 = (GId‘𝐺) | |
3 | 1, 2 | grpoidcl 27368 | . . . . . 6 ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ ran 𝐺) |
4 | 3 | 3ad2ant1 1082 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝑈 ∈ ran 𝐺) |
5 | 4, 4 | jca 554 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝑈 ∈ ran 𝐺 ∧ 𝑈 ∈ ran 𝐺)) |
6 | 1 | ghomlinOLD 33687 | . . . 4 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑈 ∈ ran 𝐺 ∧ 𝑈 ∈ ran 𝐺)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘(𝑈𝐺𝑈))) |
7 | 5, 6 | mpdan 702 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘(𝑈𝐺𝑈))) |
8 | 1, 2 | grpolid 27370 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑈 ∈ ran 𝐺) → (𝑈𝐺𝑈) = 𝑈) |
9 | 3, 8 | mpdan 702 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → (𝑈𝐺𝑈) = 𝑈) |
10 | 9 | fveq2d 6195 | . . . 4 ⊢ (𝐺 ∈ GrpOp → (𝐹‘(𝑈𝐺𝑈)) = (𝐹‘𝑈)) |
11 | 10 | 3ad2ant1 1082 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘(𝑈𝐺𝑈)) = (𝐹‘𝑈)) |
12 | 7, 11 | eqtrd 2656 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)) |
13 | eqid 2622 | . . . . . . 7 ⊢ ran 𝐻 = ran 𝐻 | |
14 | 1, 13 | elghomOLD 33686 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
15 | 14 | biimp3a 1432 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)))) |
16 | 15 | simpld 475 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:ran 𝐺⟶ran 𝐻) |
17 | 16, 4 | ffvelrnd 6360 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) ∈ ran 𝐻) |
18 | ghomidOLD.2 | . . . . . 6 ⊢ 𝑇 = (GId‘𝐻) | |
19 | 13, 18 | grpoid 27374 | . . . . 5 ⊢ ((𝐻 ∈ GrpOp ∧ (𝐹‘𝑈) ∈ ran 𝐻) → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈))) |
20 | 19 | ex 450 | . . . 4 ⊢ (𝐻 ∈ GrpOp → ((𝐹‘𝑈) ∈ ran 𝐻 → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)))) |
21 | 20 | 3ad2ant2 1083 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈) ∈ ran 𝐻 → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)))) |
22 | 17, 21 | mpd 15 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈))) |
23 | 12, 22 | mpbird 247 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ran crn 5115 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 GrpOpcgr 27343 GIdcgi 27344 GrpOpHom cghomOLD 33682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-grpo 27347 df-gid 27348 df-ghomOLD 33683 |
This theorem is referenced by: grpokerinj 33692 rngohom0 33771 |
Copyright terms: Public domain | W3C validator |