| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . . . . 7
⊢ ran 𝐺 = ran 𝐺 |
| 2 | | ghomidOLD.1 |
. . . . . . 7
⊢ 𝑈 = (GId‘𝐺) |
| 3 | 1, 2 | grpoidcl 27368 |
. . . . . 6
⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ ran 𝐺) |
| 4 | 3 | 3ad2ant1 1082 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝑈 ∈ ran 𝐺) |
| 5 | 4, 4 | jca 554 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝑈 ∈ ran 𝐺 ∧ 𝑈 ∈ ran 𝐺)) |
| 6 | 1 | ghomlinOLD 33687 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑈 ∈ ran 𝐺 ∧ 𝑈 ∈ ran 𝐺)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘(𝑈𝐺𝑈))) |
| 7 | 5, 6 | mpdan 702 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘(𝑈𝐺𝑈))) |
| 8 | 1, 2 | grpolid 27370 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝑈 ∈ ran 𝐺) → (𝑈𝐺𝑈) = 𝑈) |
| 9 | 3, 8 | mpdan 702 |
. . . . 5
⊢ (𝐺 ∈ GrpOp → (𝑈𝐺𝑈) = 𝑈) |
| 10 | 9 | fveq2d 6195 |
. . . 4
⊢ (𝐺 ∈ GrpOp → (𝐹‘(𝑈𝐺𝑈)) = (𝐹‘𝑈)) |
| 11 | 10 | 3ad2ant1 1082 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘(𝑈𝐺𝑈)) = (𝐹‘𝑈)) |
| 12 | 7, 11 | eqtrd 2656 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)) |
| 13 | | eqid 2622 |
. . . . . . 7
⊢ ran 𝐻 = ran 𝐻 |
| 14 | 1, 13 | elghomOLD 33686 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
| 15 | 14 | biimp3a 1432 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)))) |
| 16 | 15 | simpld 475 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:ran 𝐺⟶ran 𝐻) |
| 17 | 16, 4 | ffvelrnd 6360 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) ∈ ran 𝐻) |
| 18 | | ghomidOLD.2 |
. . . . . 6
⊢ 𝑇 = (GId‘𝐻) |
| 19 | 13, 18 | grpoid 27374 |
. . . . 5
⊢ ((𝐻 ∈ GrpOp ∧ (𝐹‘𝑈) ∈ ran 𝐻) → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈))) |
| 20 | 19 | ex 450 |
. . . 4
⊢ (𝐻 ∈ GrpOp → ((𝐹‘𝑈) ∈ ran 𝐻 → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)))) |
| 21 | 20 | 3ad2ant2 1083 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈) ∈ ran 𝐻 → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)))) |
| 22 | 17, 21 | mpd 15 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈))) |
| 23 | 12, 22 | mpbird 247 |
1
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) = 𝑇) |