MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grupw Structured version   Visualization version   GIF version

Theorem grupw 9617
Description: A Grothendieck universe contains the powerset of each of its members. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
grupw ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝒫 𝐴𝑈)

Proof of Theorem grupw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elgrug 9614 . . . . 5 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑦𝑈 (𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈𝑚 𝑦) ran 𝑥𝑈))))
21ibi 256 . . . 4 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑦𝑈 (𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈𝑚 𝑦) ran 𝑥𝑈)))
32simprd 479 . . 3 (𝑈 ∈ Univ → ∀𝑦𝑈 (𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈𝑚 𝑦) ran 𝑥𝑈))
4 simp1 1061 . . . 4 ((𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈𝑚 𝑦) ran 𝑥𝑈) → 𝒫 𝑦𝑈)
54ralimi 2952 . . 3 (∀𝑦𝑈 (𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈𝑚 𝑦) ran 𝑥𝑈) → ∀𝑦𝑈 𝒫 𝑦𝑈)
6 pweq 4161 . . . . 5 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
76eleq1d 2686 . . . 4 (𝑦 = 𝐴 → (𝒫 𝑦𝑈 ↔ 𝒫 𝐴𝑈))
87rspccv 3306 . . 3 (∀𝑦𝑈 𝒫 𝑦𝑈 → (𝐴𝑈 → 𝒫 𝐴𝑈))
93, 5, 83syl 18 . 2 (𝑈 ∈ Univ → (𝐴𝑈 → 𝒫 𝐴𝑈))
109imp 445 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝒫 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  𝒫 cpw 4158  {cpr 4179   cuni 4436  Tr wtr 4752  ran crn 5115  (class class class)co 6650  𝑚 cmap 7857  Univcgru 9612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-tr 4753  df-iota 5851  df-fv 5896  df-ov 6653  df-gru 9613
This theorem is referenced by:  gruss  9618  grurn  9623  gruxp  9629  grumap  9630  gruwun  9635  intgru  9636  gruina  9640  grur1a  9641
  Copyright terms: Public domain W3C validator