MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intgru Structured version   Visualization version   GIF version

Theorem intgru 9636
Description: The intersection of a family of universes is a universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
intgru ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Univ)

Proof of Theorem intgru
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
2 intex 4820 . . 3 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
31, 2sylib 208 . 2 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
4 dfss3 3592 . . . . 5 (𝐴 ⊆ Univ ↔ ∀𝑢𝐴 𝑢 ∈ Univ)
5 grutr 9615 . . . . . 6 (𝑢 ∈ Univ → Tr 𝑢)
65ralimi 2952 . . . . 5 (∀𝑢𝐴 𝑢 ∈ Univ → ∀𝑢𝐴 Tr 𝑢)
74, 6sylbi 207 . . . 4 (𝐴 ⊆ Univ → ∀𝑢𝐴 Tr 𝑢)
8 trint 4768 . . . 4 (∀𝑢𝐴 Tr 𝑢 → Tr 𝐴)
97, 8syl 17 . . 3 (𝐴 ⊆ Univ → Tr 𝐴)
109adantr 481 . 2 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → Tr 𝐴)
11 grupw 9617 . . . . . . . . . 10 ((𝑢 ∈ Univ ∧ 𝑥𝑢) → 𝒫 𝑥𝑢)
1211ex 450 . . . . . . . . 9 (𝑢 ∈ Univ → (𝑥𝑢 → 𝒫 𝑥𝑢))
1312ral2imi 2947 . . . . . . . 8 (∀𝑢𝐴 𝑢 ∈ Univ → (∀𝑢𝐴 𝑥𝑢 → ∀𝑢𝐴 𝒫 𝑥𝑢))
14 vex 3203 . . . . . . . . 9 𝑥 ∈ V
1514elint2 4482 . . . . . . . 8 (𝑥 𝐴 ↔ ∀𝑢𝐴 𝑥𝑢)
16 vpwex 4849 . . . . . . . . 9 𝒫 𝑥 ∈ V
1716elint2 4482 . . . . . . . 8 (𝒫 𝑥 𝐴 ↔ ∀𝑢𝐴 𝒫 𝑥𝑢)
1813, 15, 173imtr4g 285 . . . . . . 7 (∀𝑢𝐴 𝑢 ∈ Univ → (𝑥 𝐴 → 𝒫 𝑥 𝐴))
1918imp 445 . . . . . 6 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → 𝒫 𝑥 𝐴)
2019adantlr 751 . . . . 5 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → 𝒫 𝑥 𝐴)
21 r19.26 3064 . . . . . . . . . 10 (∀𝑢𝐴 (𝑢 ∈ Univ ∧ 𝑥𝑢) ↔ (∀𝑢𝐴 𝑢 ∈ Univ ∧ ∀𝑢𝐴 𝑥𝑢))
22 grupr 9619 . . . . . . . . . . . 12 ((𝑢 ∈ Univ ∧ 𝑥𝑢𝑦𝑢) → {𝑥, 𝑦} ∈ 𝑢)
23223expia 1267 . . . . . . . . . . 11 ((𝑢 ∈ Univ ∧ 𝑥𝑢) → (𝑦𝑢 → {𝑥, 𝑦} ∈ 𝑢))
2423ral2imi 2947 . . . . . . . . . 10 (∀𝑢𝐴 (𝑢 ∈ Univ ∧ 𝑥𝑢) → (∀𝑢𝐴 𝑦𝑢 → ∀𝑢𝐴 {𝑥, 𝑦} ∈ 𝑢))
2521, 24sylbir 225 . . . . . . . . 9 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ ∀𝑢𝐴 𝑥𝑢) → (∀𝑢𝐴 𝑦𝑢 → ∀𝑢𝐴 {𝑥, 𝑦} ∈ 𝑢))
26 vex 3203 . . . . . . . . . 10 𝑦 ∈ V
2726elint2 4482 . . . . . . . . 9 (𝑦 𝐴 ↔ ∀𝑢𝐴 𝑦𝑢)
28 prex 4909 . . . . . . . . . 10 {𝑥, 𝑦} ∈ V
2928elint2 4482 . . . . . . . . 9 ({𝑥, 𝑦} ∈ 𝐴 ↔ ∀𝑢𝐴 {𝑥, 𝑦} ∈ 𝑢)
3025, 27, 293imtr4g 285 . . . . . . . 8 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ ∀𝑢𝐴 𝑥𝑢) → (𝑦 𝐴 → {𝑥, 𝑦} ∈ 𝐴))
3115, 30sylan2b 492 . . . . . . 7 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → (𝑦 𝐴 → {𝑥, 𝑦} ∈ 𝐴))
3231ralrimiv 2965 . . . . . 6 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴)
3332adantlr 751 . . . . 5 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴)
34 elmapg 7870 . . . . . . . . . 10 (( 𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ∈ ( 𝐴𝑚 𝑥) ↔ 𝑦:𝑥 𝐴))
3514, 34mpan2 707 . . . . . . . . 9 ( 𝐴 ∈ V → (𝑦 ∈ ( 𝐴𝑚 𝑥) ↔ 𝑦:𝑥 𝐴))
362, 35sylbi 207 . . . . . . . 8 (𝐴 ≠ ∅ → (𝑦 ∈ ( 𝐴𝑚 𝑥) ↔ 𝑦:𝑥 𝐴))
3736ad2antlr 763 . . . . . . 7 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → (𝑦 ∈ ( 𝐴𝑚 𝑥) ↔ 𝑦:𝑥 𝐴))
38 intss1 4492 . . . . . . . . . . . 12 (𝑢𝐴 𝐴𝑢)
39 fss 6056 . . . . . . . . . . . 12 ((𝑦:𝑥 𝐴 𝐴𝑢) → 𝑦:𝑥𝑢)
4038, 39sylan2 491 . . . . . . . . . . 11 ((𝑦:𝑥 𝐴𝑢𝐴) → 𝑦:𝑥𝑢)
4140ralrimiva 2966 . . . . . . . . . 10 (𝑦:𝑥 𝐴 → ∀𝑢𝐴 𝑦:𝑥𝑢)
42 gruurn 9620 . . . . . . . . . . . . . 14 ((𝑢 ∈ Univ ∧ 𝑥𝑢𝑦:𝑥𝑢) → ran 𝑦𝑢)
43423expia 1267 . . . . . . . . . . . . 13 ((𝑢 ∈ Univ ∧ 𝑥𝑢) → (𝑦:𝑥𝑢 ran 𝑦𝑢))
4443ral2imi 2947 . . . . . . . . . . . 12 (∀𝑢𝐴 (𝑢 ∈ Univ ∧ 𝑥𝑢) → (∀𝑢𝐴 𝑦:𝑥𝑢 → ∀𝑢𝐴 ran 𝑦𝑢))
4521, 44sylbir 225 . . . . . . . . . . 11 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ ∀𝑢𝐴 𝑥𝑢) → (∀𝑢𝐴 𝑦:𝑥𝑢 → ∀𝑢𝐴 ran 𝑦𝑢))
4615, 45sylan2b 492 . . . . . . . . . 10 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → (∀𝑢𝐴 𝑦:𝑥𝑢 → ∀𝑢𝐴 ran 𝑦𝑢))
4741, 46syl5 34 . . . . . . . . 9 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → (𝑦:𝑥 𝐴 → ∀𝑢𝐴 ran 𝑦𝑢))
4826rnex 7100 . . . . . . . . . . 11 ran 𝑦 ∈ V
4948uniex 6953 . . . . . . . . . 10 ran 𝑦 ∈ V
5049elint2 4482 . . . . . . . . 9 ( ran 𝑦 𝐴 ↔ ∀𝑢𝐴 ran 𝑦𝑢)
5147, 50syl6ibr 242 . . . . . . . 8 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → (𝑦:𝑥 𝐴 ran 𝑦 𝐴))
5251adantlr 751 . . . . . . 7 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → (𝑦:𝑥 𝐴 ran 𝑦 𝐴))
5337, 52sylbid 230 . . . . . 6 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → (𝑦 ∈ ( 𝐴𝑚 𝑥) → ran 𝑦 𝐴))
5453ralrimiv 2965 . . . . 5 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ∀𝑦 ∈ ( 𝐴𝑚 𝑥) ran 𝑦 𝐴)
5520, 33, 543jca 1242 . . . 4 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → (𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴𝑚 𝑥) ran 𝑦 𝐴))
5655ralrimiva 2966 . . 3 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) → ∀𝑥 𝐴(𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴𝑚 𝑥) ran 𝑦 𝐴))
574, 56sylanb 489 . 2 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → ∀𝑥 𝐴(𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴𝑚 𝑥) ran 𝑦 𝐴))
58 elgrug 9614 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ Univ ↔ (Tr 𝐴 ∧ ∀𝑥 𝐴(𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴𝑚 𝑥) ran 𝑦 𝐴))))
5958biimpar 502 . 2 (( 𝐴 ∈ V ∧ (Tr 𝐴 ∧ ∀𝑥 𝐴(𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴𝑚 𝑥) ran 𝑦 𝐴))) → 𝐴 ∈ Univ)
603, 10, 57, 59syl12anc 1324 1 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Univ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wne 2794  wral 2912  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158  {cpr 4179   cuni 4436   cint 4475  Tr wtr 4752  ran crn 5115  wf 5884  (class class class)co 6650  𝑚 cmap 7857  Univcgru 9612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-gru 9613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator