MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwpwdom Structured version   Visualization version   GIF version

Theorem hauspwpwdom 21792
Description: If 𝑋 is a Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by the double powerset of 𝐴. In particular, a Hausdorff space with a dense subset 𝐴 has cardinality at most 𝒫 𝒫 𝐴, and a separable Hausdorff space has cardinality at most 𝒫 𝒫 ℕ. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 28-Jul-2015.)
Hypothesis
Ref Expression
hauspwpwf1.x 𝑋 = 𝐽
Assertion
Ref Expression
hauspwpwdom ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴)

Proof of Theorem hauspwpwdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6203 . 2 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ∈ V)
2 haustop 21135 . . . . . 6 (𝐽 ∈ Haus → 𝐽 ∈ Top)
3 hauspwpwf1.x . . . . . . 7 𝑋 = 𝐽
43topopn 20711 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
52, 4syl 17 . . . . 5 (𝐽 ∈ Haus → 𝑋𝐽)
65adantr 481 . . . 4 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝑋𝐽)
7 simpr 477 . . . 4 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝐴𝑋)
86, 7ssexd 4805 . . 3 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝐴 ∈ V)
9 pwexg 4850 . . 3 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
10 pwexg 4850 . . 3 (𝒫 𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V)
118, 9, 103syl 18 . 2 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝒫 𝒫 𝐴 ∈ V)
12 eqid 2622 . . 3 (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))}) = (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))})
133, 12hauspwpwf1 21791 . 2 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴)
14 f1dom2g 7973 . 2 ((((cls‘𝐽)‘𝐴) ∈ V ∧ 𝒫 𝒫 𝐴 ∈ V ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴)
151, 11, 13, 14syl3anc 1326 1 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wrex 2913  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436   class class class wbr 4653  cmpt 4729  1-1wf1 5885  cfv 5888  cdom 7953  Topctop 20698  clsccl 20822  Hauscha 21112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-dom 7957  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825  df-haus 21119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator