MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwpwdom Structured version   Visualization version   Unicode version

Theorem hauspwpwdom 21792
Description: If  X is a Hausdorff space, then the cardinality of the closure of a set  A is bounded by the double powerset of  A. In particular, a Hausdorff space with a dense subset  A has cardinality at most  ~P ~P A, and a separable Hausdorff space has cardinality at most  ~P ~P NN. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 28-Jul-2015.)
Hypothesis
Ref Expression
hauspwpwf1.x  |-  X  = 
U. J
Assertion
Ref Expression
hauspwpwdom  |-  ( ( J  e.  Haus  /\  A  C_  X )  ->  (
( cls `  J
) `  A )  ~<_  ~P ~P A )

Proof of Theorem hauspwpwdom
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6203 . 2  |-  ( ( J  e.  Haus  /\  A  C_  X )  ->  (
( cls `  J
) `  A )  e.  _V )
2 haustop 21135 . . . . . 6  |-  ( J  e.  Haus  ->  J  e. 
Top )
3 hauspwpwf1.x . . . . . . 7  |-  X  = 
U. J
43topopn 20711 . . . . . 6  |-  ( J  e.  Top  ->  X  e.  J )
52, 4syl 17 . . . . 5  |-  ( J  e.  Haus  ->  X  e.  J )
65adantr 481 . . . 4  |-  ( ( J  e.  Haus  /\  A  C_  X )  ->  X  e.  J )
7 simpr 477 . . . 4  |-  ( ( J  e.  Haus  /\  A  C_  X )  ->  A  C_  X )
86, 7ssexd 4805 . . 3  |-  ( ( J  e.  Haus  /\  A  C_  X )  ->  A  e.  _V )
9 pwexg 4850 . . 3  |-  ( A  e.  _V  ->  ~P A  e.  _V )
10 pwexg 4850 . . 3  |-  ( ~P A  e.  _V  ->  ~P ~P A  e.  _V )
118, 9, 103syl 18 . 2  |-  ( ( J  e.  Haus  /\  A  C_  X )  ->  ~P ~P A  e.  _V )
12 eqid 2622 . . 3  |-  ( x  e.  ( ( cls `  J ) `  A
)  |->  { z  |  E. y  e.  J  ( x  e.  y  /\  z  =  (
y  i^i  A )
) } )  =  ( x  e.  ( ( cls `  J
) `  A )  |->  { z  |  E. y  e.  J  (
x  e.  y  /\  z  =  ( y  i^i  A ) ) } )
133, 12hauspwpwf1 21791 . 2  |-  ( ( J  e.  Haus  /\  A  C_  X )  ->  (
x  e.  ( ( cls `  J ) `
 A )  |->  { z  |  E. y  e.  J  ( x  e.  y  /\  z  =  ( y  i^i 
A ) ) } ) : ( ( cls `  J ) `
 A ) -1-1-> ~P ~P A )
14 f1dom2g 7973 . 2  |-  ( ( ( ( cls `  J
) `  A )  e.  _V  /\  ~P ~P A  e.  _V  /\  (
x  e.  ( ( cls `  J ) `
 A )  |->  { z  |  E. y  e.  J  ( x  e.  y  /\  z  =  ( y  i^i 
A ) ) } ) : ( ( cls `  J ) `
 A ) -1-1-> ~P ~P A )  ->  (
( cls `  J
) `  A )  ~<_  ~P ~P A )
151, 11, 13, 14syl3anc 1326 1  |-  ( ( J  e.  Haus  /\  A  C_  X )  ->  (
( cls `  J
) `  A )  ~<_  ~P ~P A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   -1-1->wf1 5885   ` cfv 5888    ~<_ cdom 7953   Topctop 20698   clsccl 20822   Hauscha 21112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-dom 7957  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825  df-haus 21119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator