Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1val Structured version   Visualization version   GIF version

Theorem hdmap1val 37088
Description: Value of preliminary map from vectors to functionals in the closed kernel dual space. (Restatement of mapdhval 37013.) TODO: change 𝐼 = (𝑥 ∈ V ↦... to (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌 > ) =... in e.g. mapdh8 37078 to shorten proofs with no $d on 𝑥. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1val.h 𝐻 = (LHyp‘𝐾)
hdmap1fval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1fval.v 𝑉 = (Base‘𝑈)
hdmap1fval.s = (-g𝑈)
hdmap1fval.o 0 = (0g𝑈)
hdmap1fval.n 𝑁 = (LSpan‘𝑈)
hdmap1fval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1fval.d 𝐷 = (Base‘𝐶)
hdmap1fval.r 𝑅 = (-g𝐶)
hdmap1fval.q 𝑄 = (0g𝐶)
hdmap1fval.j 𝐽 = (LSpan‘𝐶)
hdmap1fval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1fval.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1fval.k (𝜑 → (𝐾𝐴𝑊𝐻))
hdmap1val.x (𝜑𝑋𝑉)
hdmap1val.f (𝜑𝐹𝐷)
hdmap1val.y (𝜑𝑌𝑉)
Assertion
Ref Expression
hdmap1val (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = if(𝑌 = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)})))))
Distinct variable groups:   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑈,   ,𝑉   ,𝐹   ,𝑋   ,𝑌   𝜑,
Allowed substitution hints:   𝐴()   𝑄()   𝑅()   𝐻()   𝐼()   𝐾()   ()   𝑊()   0 ()

Proof of Theorem hdmap1val
StepHypRef Expression
1 hdmap1val.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap1fval.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1fval.v . . 3 𝑉 = (Base‘𝑈)
4 hdmap1fval.s . . 3 = (-g𝑈)
5 hdmap1fval.o . . 3 0 = (0g𝑈)
6 hdmap1fval.n . . 3 𝑁 = (LSpan‘𝑈)
7 hdmap1fval.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1fval.d . . 3 𝐷 = (Base‘𝐶)
9 hdmap1fval.r . . 3 𝑅 = (-g𝐶)
10 hdmap1fval.q . . 3 𝑄 = (0g𝐶)
11 hdmap1fval.j . . 3 𝐽 = (LSpan‘𝐶)
12 hdmap1fval.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1fval.i . . 3 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1fval.k . . 3 (𝜑 → (𝐾𝐴𝑊𝐻))
15 df-ot 4186 . . . 4 𝑋, 𝐹, 𝑌⟩ = ⟨⟨𝑋, 𝐹⟩, 𝑌
16 hdmap1val.x . . . . . 6 (𝜑𝑋𝑉)
17 hdmap1val.f . . . . . 6 (𝜑𝐹𝐷)
18 opelxp 5146 . . . . . 6 (⟨𝑋, 𝐹⟩ ∈ (𝑉 × 𝐷) ↔ (𝑋𝑉𝐹𝐷))
1916, 17, 18sylanbrc 698 . . . . 5 (𝜑 → ⟨𝑋, 𝐹⟩ ∈ (𝑉 × 𝐷))
20 hdmap1val.y . . . . 5 (𝜑𝑌𝑉)
21 opelxp 5146 . . . . 5 (⟨⟨𝑋, 𝐹⟩, 𝑌⟩ ∈ ((𝑉 × 𝐷) × 𝑉) ↔ (⟨𝑋, 𝐹⟩ ∈ (𝑉 × 𝐷) ∧ 𝑌𝑉))
2219, 20, 21sylanbrc 698 . . . 4 (𝜑 → ⟨⟨𝑋, 𝐹⟩, 𝑌⟩ ∈ ((𝑉 × 𝐷) × 𝑉))
2315, 22syl5eqel 2705 . . 3 (𝜑 → ⟨𝑋, 𝐹, 𝑌⟩ ∈ ((𝑉 × 𝐷) × 𝑉))
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23hdmap1vallem 37087 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = if((2nd ‘⟨𝑋, 𝐹, 𝑌⟩) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd ‘⟨𝑋, 𝐹, 𝑌⟩)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩)) (2nd ‘⟨𝑋, 𝐹, 𝑌⟩))})) = (𝐽‘{((2nd ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩))𝑅)})))))
25 ot3rdg 7184 . . . . 5 (𝑌𝑉 → (2nd ‘⟨𝑋, 𝐹, 𝑌⟩) = 𝑌)
2620, 25syl 17 . . . 4 (𝜑 → (2nd ‘⟨𝑋, 𝐹, 𝑌⟩) = 𝑌)
2726eqeq1d 2624 . . 3 (𝜑 → ((2nd ‘⟨𝑋, 𝐹, 𝑌⟩) = 0𝑌 = 0 ))
2826sneqd 4189 . . . . . . . 8 (𝜑 → {(2nd ‘⟨𝑋, 𝐹, 𝑌⟩)} = {𝑌})
2928fveq2d 6195 . . . . . . 7 (𝜑 → (𝑁‘{(2nd ‘⟨𝑋, 𝐹, 𝑌⟩)}) = (𝑁‘{𝑌}))
3029fveq2d 6195 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(2nd ‘⟨𝑋, 𝐹, 𝑌⟩)})) = (𝑀‘(𝑁‘{𝑌})))
3130eqeq1d 2624 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(2nd ‘⟨𝑋, 𝐹, 𝑌⟩)})) = (𝐽‘{}) ↔ (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{})))
32 ot1stg 7182 . . . . . . . . . . 11 ((𝑋𝑉𝐹𝐷𝑌𝑉) → (1st ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩)) = 𝑋)
3316, 17, 20, 32syl3anc 1326 . . . . . . . . . 10 (𝜑 → (1st ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩)) = 𝑋)
3433, 26oveq12d 6668 . . . . . . . . 9 (𝜑 → ((1st ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩)) (2nd ‘⟨𝑋, 𝐹, 𝑌⟩)) = (𝑋 𝑌))
3534sneqd 4189 . . . . . . . 8 (𝜑 → {((1st ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩)) (2nd ‘⟨𝑋, 𝐹, 𝑌⟩))} = {(𝑋 𝑌)})
3635fveq2d 6195 . . . . . . 7 (𝜑 → (𝑁‘{((1st ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩)) (2nd ‘⟨𝑋, 𝐹, 𝑌⟩))}) = (𝑁‘{(𝑋 𝑌)}))
3736fveq2d 6195 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{((1st ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩)) (2nd ‘⟨𝑋, 𝐹, 𝑌⟩))})) = (𝑀‘(𝑁‘{(𝑋 𝑌)})))
38 ot2ndg 7183 . . . . . . . . . 10 ((𝑋𝑉𝐹𝐷𝑌𝑉) → (2nd ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩)) = 𝐹)
3916, 17, 20, 38syl3anc 1326 . . . . . . . . 9 (𝜑 → (2nd ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩)) = 𝐹)
4039oveq1d 6665 . . . . . . . 8 (𝜑 → ((2nd ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩))𝑅) = (𝐹𝑅))
4140sneqd 4189 . . . . . . 7 (𝜑 → {((2nd ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩))𝑅)} = {(𝐹𝑅)})
4241fveq2d 6195 . . . . . 6 (𝜑 → (𝐽‘{((2nd ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩))𝑅)}) = (𝐽‘{(𝐹𝑅)}))
4337, 42eqeq12d 2637 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{((1st ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩)) (2nd ‘⟨𝑋, 𝐹, 𝑌⟩))})) = (𝐽‘{((2nd ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩))𝑅)}) ↔ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)})))
4431, 43anbi12d 747 . . . 4 (𝜑 → (((𝑀‘(𝑁‘{(2nd ‘⟨𝑋, 𝐹, 𝑌⟩)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩)) (2nd ‘⟨𝑋, 𝐹, 𝑌⟩))})) = (𝐽‘{((2nd ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩))𝑅)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))))
4544riotabidv 6613 . . 3 (𝜑 → (𝐷 ((𝑀‘(𝑁‘{(2nd ‘⟨𝑋, 𝐹, 𝑌⟩)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩)) (2nd ‘⟨𝑋, 𝐹, 𝑌⟩))})) = (𝐽‘{((2nd ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩))𝑅)}))) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))))
4627, 45ifbieq2d 4111 . 2 (𝜑 → if((2nd ‘⟨𝑋, 𝐹, 𝑌⟩) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd ‘⟨𝑋, 𝐹, 𝑌⟩)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩)) (2nd ‘⟨𝑋, 𝐹, 𝑌⟩))})) = (𝐽‘{((2nd ‘(1st ‘⟨𝑋, 𝐹, 𝑌⟩))𝑅)})))) = if(𝑌 = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)})))))
4724, 46eqtrd 2656 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = if(𝑌 = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  ifcif 4086  {csn 4177  cop 4183  cotp 4185   × cxp 5112  cfv 5888  crio 6610  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Basecbs 15857  0gc0g 16100  -gcsg 17424  LSpanclspn 18971  LHypclh 35270  DVecHcdvh 36367  LCDualclcd 36875  mapdcmpd 36913  HDMap1chdma1 37081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-1st 7168  df-2nd 7169  df-hdmap1 37083
This theorem is referenced by:  hdmap1val0  37089  hdmap1val2  37090  hdmap1valc  37093
  Copyright terms: Public domain W3C validator