| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1val | Structured version Visualization version Unicode version | ||
| Description: Value of preliminary map
from vectors to functionals in the closed
kernel dual space. (Restatement of mapdhval 37013.) TODO: change
|
| Ref | Expression |
|---|---|
| hdmap1val.h |
|
| hdmap1fval.u |
|
| hdmap1fval.v |
|
| hdmap1fval.s |
|
| hdmap1fval.o |
|
| hdmap1fval.n |
|
| hdmap1fval.c |
|
| hdmap1fval.d |
|
| hdmap1fval.r |
|
| hdmap1fval.q |
|
| hdmap1fval.j |
|
| hdmap1fval.m |
|
| hdmap1fval.i |
|
| hdmap1fval.k |
|
| hdmap1val.x |
|
| hdmap1val.f |
|
| hdmap1val.y |
|
| Ref | Expression |
|---|---|
| hdmap1val |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap1val.h |
. . 3
| |
| 2 | hdmap1fval.u |
. . 3
| |
| 3 | hdmap1fval.v |
. . 3
| |
| 4 | hdmap1fval.s |
. . 3
| |
| 5 | hdmap1fval.o |
. . 3
| |
| 6 | hdmap1fval.n |
. . 3
| |
| 7 | hdmap1fval.c |
. . 3
| |
| 8 | hdmap1fval.d |
. . 3
| |
| 9 | hdmap1fval.r |
. . 3
| |
| 10 | hdmap1fval.q |
. . 3
| |
| 11 | hdmap1fval.j |
. . 3
| |
| 12 | hdmap1fval.m |
. . 3
| |
| 13 | hdmap1fval.i |
. . 3
| |
| 14 | hdmap1fval.k |
. . 3
| |
| 15 | df-ot 4186 |
. . . 4
| |
| 16 | hdmap1val.x |
. . . . . 6
| |
| 17 | hdmap1val.f |
. . . . . 6
| |
| 18 | opelxp 5146 |
. . . . . 6
| |
| 19 | 16, 17, 18 | sylanbrc 698 |
. . . . 5
|
| 20 | hdmap1val.y |
. . . . 5
| |
| 21 | opelxp 5146 |
. . . . 5
| |
| 22 | 19, 20, 21 | sylanbrc 698 |
. . . 4
|
| 23 | 15, 22 | syl5eqel 2705 |
. . 3
|
| 24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23 | hdmap1vallem 37087 |
. 2
|
| 25 | ot3rdg 7184 |
. . . . 5
| |
| 26 | 20, 25 | syl 17 |
. . . 4
|
| 27 | 26 | eqeq1d 2624 |
. . 3
|
| 28 | 26 | sneqd 4189 |
. . . . . . . 8
|
| 29 | 28 | fveq2d 6195 |
. . . . . . 7
|
| 30 | 29 | fveq2d 6195 |
. . . . . 6
|
| 31 | 30 | eqeq1d 2624 |
. . . . 5
|
| 32 | ot1stg 7182 |
. . . . . . . . . . 11
| |
| 33 | 16, 17, 20, 32 | syl3anc 1326 |
. . . . . . . . . 10
|
| 34 | 33, 26 | oveq12d 6668 |
. . . . . . . . 9
|
| 35 | 34 | sneqd 4189 |
. . . . . . . 8
|
| 36 | 35 | fveq2d 6195 |
. . . . . . 7
|
| 37 | 36 | fveq2d 6195 |
. . . . . 6
|
| 38 | ot2ndg 7183 |
. . . . . . . . . 10
| |
| 39 | 16, 17, 20, 38 | syl3anc 1326 |
. . . . . . . . 9
|
| 40 | 39 | oveq1d 6665 |
. . . . . . . 8
|
| 41 | 40 | sneqd 4189 |
. . . . . . 7
|
| 42 | 41 | fveq2d 6195 |
. . . . . 6
|
| 43 | 37, 42 | eqeq12d 2637 |
. . . . 5
|
| 44 | 31, 43 | anbi12d 747 |
. . . 4
|
| 45 | 44 | riotabidv 6613 |
. . 3
|
| 46 | 27, 45 | ifbieq2d 4111 |
. 2
|
| 47 | 24, 46 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-ot 4186 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-1st 7168 df-2nd 7169 df-hdmap1 37083 |
| This theorem is referenced by: hdmap1val0 37089 hdmap1val2 37090 hdmap1valc 37093 |
| Copyright terms: Public domain | W3C validator |