![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hiassdi | Structured version Visualization version GIF version |
Description: Distributive/associative law for inner product, useful for linearity proofs. (Contributed by NM, 10-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hiassdi | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ·ℎ 𝐵) +ℎ 𝐶) ·ih 𝐷) = ((𝐴 · (𝐵 ·ih 𝐷)) + (𝐶 ·ih 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl 27870 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
2 | ax-his2 27940 | . . . 4 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 ·ℎ 𝐵) +ℎ 𝐶) ·ih 𝐷) = (((𝐴 ·ℎ 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷))) | |
3 | 2 | 3expb 1266 | . . 3 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ·ℎ 𝐵) +ℎ 𝐶) ·ih 𝐷) = (((𝐴 ·ℎ 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷))) |
4 | 1, 3 | sylan 488 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ·ℎ 𝐵) +ℎ 𝐶) ·ih 𝐷) = (((𝐴 ·ℎ 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷))) |
5 | ax-his3 27941 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐷) = (𝐴 · (𝐵 ·ih 𝐷))) | |
6 | 5 | 3expa 1265 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐷 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐷) = (𝐴 · (𝐵 ·ih 𝐷))) |
7 | 6 | adantrl 752 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ·ℎ 𝐵) ·ih 𝐷) = (𝐴 · (𝐵 ·ih 𝐷))) |
8 | 7 | oveq1d 6665 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ·ℎ 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷)) = ((𝐴 · (𝐵 ·ih 𝐷)) + (𝐶 ·ih 𝐷))) |
9 | 4, 8 | eqtrd 2656 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ·ℎ 𝐵) +ℎ 𝐶) ·ih 𝐷) = ((𝐴 · (𝐵 ·ih 𝐷)) + (𝐶 ·ih 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 (class class class)co 6650 ℂcc 9934 + caddc 9939 · cmul 9941 ℋchil 27776 +ℎ cva 27777 ·ℎ csm 27778 ·ih csp 27779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-hfvmul 27862 ax-his2 27940 ax-his3 27941 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 |
This theorem is referenced by: unoplin 28779 hmoplin 28801 |
Copyright terms: Public domain | W3C validator |