HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  his7 Structured version   Visualization version   GIF version

Theorem his7 27947
Description: Distributive law for inner product. Lemma 3.1(S7) of [Beran] p. 95. (Contributed by NM, 31-Jul-1999.) (New usage is discouraged.)
Assertion
Ref Expression
his7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 + 𝐶)) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐶)))

Proof of Theorem his7
StepHypRef Expression
1 ax-his2 27940 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 + 𝐶) ·ih 𝐴) = ((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴)))
21fveq2d 6195 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 + 𝐶) ·ih 𝐴)) = (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))))
3 hicl 27937 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ)
4 hicl 27937 . . . . . 6 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐶 ·ih 𝐴) ∈ ℂ)
5 cjadd 13881 . . . . . 6 (((𝐵 ·ih 𝐴) ∈ ℂ ∧ (𝐶 ·ih 𝐴) ∈ ℂ) → (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴))))
63, 4, 5syl2an 494 . . . . 5 (((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ)) → (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴))))
763impdir 1382 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴))))
82, 7eqtrd 2656 . . 3 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 + 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴))))
983comr 1273 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘((𝐵 + 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴))))
10 hvaddcl 27869 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 + 𝐶) ∈ ℋ)
11 ax-his1 27939 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐵 + 𝐶) ∈ ℋ) → (𝐴 ·ih (𝐵 + 𝐶)) = (∗‘((𝐵 + 𝐶) ·ih 𝐴)))
1210, 11sylan2 491 . . 3 ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝐴 ·ih (𝐵 + 𝐶)) = (∗‘((𝐵 + 𝐶) ·ih 𝐴)))
13123impb 1260 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 + 𝐶)) = (∗‘((𝐵 + 𝐶) ·ih 𝐴)))
14 ax-his1 27939 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))
15143adant3 1081 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))
16 ax-his1 27939 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴)))
17163adant2 1080 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴)))
1815, 17oveq12d 6668 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐶)) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴))))
199, 13, 183eqtr4d 2666 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 + 𝐶)) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  cc 9934   + caddc 9939  ccj 13836  chil 27776   + cva 27777   ·ih csp 27779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hfvadd 27857  ax-hfi 27936  ax-his1 27939  ax-his2 27940
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  normlem0  27966  normlem8  27974  pjadjii  28533  lnopunilem1  28869  hmops  28879  cnlnadjlem6  28931  adjlnop  28945  adjadd  28952  hstoh  29091
  Copyright terms: Public domain W3C validator