Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatjidm Structured version   Visualization version   GIF version

Theorem hlatjidm 34655
Description: Idempotence of join operation. Frequently-used special case of latjcom 17059 for atoms. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
hlatjcom.j = (join‘𝐾)
hlatjcom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlatjidm ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 𝑋) = 𝑋)

Proof of Theorem hlatjidm
StepHypRef Expression
1 hllat 34650 . 2 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 eqid 2622 . . 3 (Base‘𝐾) = (Base‘𝐾)
3 hlatjcom.a . . 3 𝐴 = (Atoms‘𝐾)
42, 3atbase 34576 . 2 (𝑋𝐴𝑋 ∈ (Base‘𝐾))
5 hlatjcom.j . . 3 = (join‘𝐾)
62, 5latjidm 17074 . 2 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋 𝑋) = 𝑋)
71, 4, 6syl2an 494 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  joincjn 16944  Latclat 17045  Atomscatm 34550  HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by:  atcvr0eq  34712  lnnat  34713  atcvrj0  34714  atltcvr  34721  3dim2  34754  3dim3  34755  islln2a  34803  2at0mat0  34811  lplnnle2at  34827  lplnnleat  34828  islpln2a  34834  lvolnle3at  34868  lvolnleat  34869  lvolnlelln  34870  2atnelvolN  34873  islvol2aN  34878  dalempnes  34937  dalemqnet  34938  2llnma3r  35074  dalawlem12  35168  4atex2-0aOLDN  35364  idltrn  35436  trl0  35457  trlval3  35474  cdleme3b  35516  cdleme11h  35553  cdleme16c  35567  cdleme18b  35579  cdleme20j  35606  cdleme42ke  35773  cdleme50trn3  35841  cdlemb3  35894  cdlemg8a  35915  trlcone  36016  dia2dimlem13  36365
  Copyright terms: Public domain W3C validator