Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnle3at Structured version   Visualization version   GIF version

Theorem lvolnle3at 34868
Description: A lattice plane (or lattice line or atom) cannot majorize a lattice volume. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
lvolnle3at.l = (le‘𝐾)
lvolnle3at.j = (join‘𝐾)
lvolnle3at.a 𝐴 = (Atoms‘𝐾)
lvolnle3at.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolnle3at (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))

Proof of Theorem lvolnle3at
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simplr 792 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑋𝑉)
2 eqid 2622 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2622 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 eqid 2622 . . . . . 6 (LPlanes‘𝐾) = (LPlanes‘𝐾)
5 lvolnle3at.v . . . . . 6 𝑉 = (LVols‘𝐾)
62, 3, 4, 5islvol 34859 . . . . 5 (𝐾 ∈ HL → (𝑋𝑉 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
76ad2antrr 762 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑋𝑉 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
81, 7mpbid 222 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋))
98simprd 479 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)
10 oveq1 6657 . . . . . . . . 9 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
1110oveq1d 6665 . . . . . . . 8 (𝑃 = 𝑄 → ((𝑃 𝑄) 𝑅) = ((𝑄 𝑄) 𝑅))
1211breq2d 4665 . . . . . . 7 (𝑃 = 𝑄 → (𝑋 ((𝑃 𝑄) 𝑅) ↔ 𝑋 ((𝑄 𝑄) 𝑅)))
1312notbid 308 . . . . . 6 (𝑃 = 𝑄 → (¬ 𝑋 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑋 ((𝑄 𝑄) 𝑅)))
14 simp1l 1085 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ HL)
15 simp3l 1089 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (LPlanes‘𝐾))
16 simp21 1094 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑃𝐴)
17 simp22 1095 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑄𝐴)
18 lvolnle3at.l . . . . . . . . . . . . 13 = (le‘𝐾)
19 lvolnle3at.j . . . . . . . . . . . . 13 = (join‘𝐾)
20 lvolnle3at.a . . . . . . . . . . . . 13 𝐴 = (Atoms‘𝐾)
2118, 19, 20, 4lplnnle2at 34827 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑃𝐴𝑄𝐴)) → ¬ 𝑦 (𝑃 𝑄))
2214, 15, 16, 17, 21syl13anc 1328 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑦 (𝑃 𝑄))
232, 4lplnbase 34820 . . . . . . . . . . . . . . 15 (𝑦 ∈ (LPlanes‘𝐾) → 𝑦 ∈ (Base‘𝐾))
2415, 23syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (Base‘𝐾))
25 simp1r 1086 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋𝑉)
262, 5lvolbase 34864 . . . . . . . . . . . . . . 15 (𝑋𝑉𝑋 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋 ∈ (Base‘𝐾))
28 simp3r 1090 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦( ⋖ ‘𝐾)𝑋)
29 eqid 2622 . . . . . . . . . . . . . . 15 (lt‘𝐾) = (lt‘𝐾)
302, 29, 3cvrlt 34557 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → 𝑦(lt‘𝐾)𝑋)
3114, 24, 27, 28, 30syl31anc 1329 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦(lt‘𝐾)𝑋)
32 hlpos 34652 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3314, 32syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ Poset)
342, 19, 20hlatjcl 34653 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3514, 16, 17, 34syl3anc 1326 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑃 𝑄) ∈ (Base‘𝐾))
362, 18, 29pltletr 16971 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑃 𝑄)) → 𝑦(lt‘𝐾)(𝑃 𝑄)))
3733, 24, 27, 35, 36syl13anc 1328 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑃 𝑄)) → 𝑦(lt‘𝐾)(𝑃 𝑄)))
3831, 37mpand 711 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑃 𝑄) → 𝑦(lt‘𝐾)(𝑃 𝑄)))
3918, 29pltle 16961 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LPlanes‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑦(lt‘𝐾)(𝑃 𝑄) → 𝑦 (𝑃 𝑄)))
4014, 15, 35, 39syl3anc 1326 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑦(lt‘𝐾)(𝑃 𝑄) → 𝑦 (𝑃 𝑄)))
4138, 40syld 47 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑃 𝑄) → 𝑦 (𝑃 𝑄)))
4222, 41mtod 189 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑃 𝑄))
4342adantr 481 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ¬ 𝑋 (𝑃 𝑄))
44 simprr 796 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
45 hllat 34650 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ Lat)
4614, 45syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ Lat)
47 simp23 1096 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅𝐴)
482, 20atbase 34576 . . . . . . . . . . . . . 14 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
4947, 48syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅 ∈ (Base‘𝐾))
502, 18, 19latleeqj2 17064 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
5146, 49, 35, 50syl3anc 1326 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
5251adantr 481 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
5344, 52mpbid 222 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑅) = (𝑃 𝑄))
5453breq2d 4665 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → (𝑋 ((𝑃 𝑄) 𝑅) ↔ 𝑋 (𝑃 𝑄)))
5543, 54mtbird 315 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
5655anassrs 680 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑃𝑄) ∧ 𝑅 (𝑃 𝑄)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
57 simpl1l 1112 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ HL)
58 simpl3l 1116 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑦 ∈ (LPlanes‘𝐾))
59 simpl2 1065 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑃𝐴𝑄𝐴𝑅𝐴))
60 simpr 477 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))
6118, 19, 20, 4lplni2 34823 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
6257, 59, 60, 61syl3anc 1326 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
6329, 4lplnnlt 34851 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LPlanes‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾)) → ¬ 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅))
6457, 58, 62, 63syl3anc 1326 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅))
652, 19latjcl 17051 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
6646, 35, 49, 65syl3anc 1326 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
672, 18, 29pltletr 16971 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 ((𝑃 𝑄) 𝑅)) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
6833, 24, 27, 66, 67syl13anc 1328 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 ((𝑃 𝑄) 𝑅)) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
6931, 68mpand 711 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 ((𝑃 𝑄) 𝑅) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
7069adantr 481 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑋 ((𝑃 𝑄) 𝑅) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
7164, 70mtod 189 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
7271anassrs 680 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑃𝑄) ∧ ¬ 𝑅 (𝑃 𝑄)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
7356, 72pm2.61dan 832 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑃𝑄) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
74 eqid 2622 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
7574, 19, 20, 4lplnnle2at 34827 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑄𝐴𝑅𝐴)) → ¬ 𝑦(le‘𝐾)(𝑄 𝑅))
7614, 15, 17, 47, 75syl13anc 1328 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑦(le‘𝐾)(𝑄 𝑅))
772, 19, 20hlatjcl 34653 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
7814, 17, 47, 77syl3anc 1326 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑄 𝑅) ∈ (Base‘𝐾))
792, 18, 29pltletr 16971 . . . . . . . . . . 11 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
8033, 24, 27, 78, 79syl13anc 1328 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
8131, 80mpand 711 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑄 𝑅) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
8274, 29pltle 16961 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LPlanes‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑦(lt‘𝐾)(𝑄 𝑅) → 𝑦(le‘𝐾)(𝑄 𝑅)))
8314, 15, 78, 82syl3anc 1326 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑦(lt‘𝐾)(𝑄 𝑅) → 𝑦(le‘𝐾)(𝑄 𝑅)))
8481, 83syld 47 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑄 𝑅) → 𝑦(le‘𝐾)(𝑄 𝑅)))
8576, 84mtod 189 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑄 𝑅))
8619, 20hlatjidm 34655 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
8714, 17, 86syl2anc 693 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑄 𝑄) = 𝑄)
8887oveq1d 6665 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑄 𝑄) 𝑅) = (𝑄 𝑅))
8988breq2d 4665 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 ((𝑄 𝑄) 𝑅) ↔ 𝑋 (𝑄 𝑅)))
9085, 89mtbird 315 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 ((𝑄 𝑄) 𝑅))
9113, 73, 90pm2.61ne 2879 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
92913expia 1267 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → ¬ 𝑋 ((𝑃 𝑄) 𝑅)))
9392expd 452 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑦 ∈ (LPlanes‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 ((𝑃 𝑄) 𝑅))))
9493rexlimdv 3030 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 ((𝑃 𝑄) 𝑅)))
959, 94mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  Posetcpo 16940  ltcplt 16941  joincjn 16944  Latclat 17045  ccvr 34549  Atomscatm 34550  HLchlt 34637  LPlanesclpl 34778  LVolsclvol 34779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786
This theorem is referenced by:  lvolnleat  34869  lvolnlelln  34870  lvolnlelpln  34871  3atnelvolN  34872  4atlem3  34882  dalem39  34997
  Copyright terms: Public domain W3C validator